'Weak Dependency Graph [60.0]'
------------------------------
Answer:           YES(?,O(n^1))
Input Problem:    innermost runtime-complexity with respect to
  Rules:
    {  active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z)))
     , active(__(X, nil())) -> mark(X)
     , active(__(nil(), X)) -> mark(X)
     , active(and(tt(), X)) -> mark(X)
     , active(isNePal(__(I, __(P, I)))) -> mark(tt())
     , active(__(X1, X2)) -> __(active(X1), X2)
     , active(__(X1, X2)) -> __(X1, active(X2))
     , active(and(X1, X2)) -> and(active(X1), X2)
     , active(isNePal(X)) -> isNePal(active(X))
     , __(mark(X1), X2) -> mark(__(X1, X2))
     , __(X1, mark(X2)) -> mark(__(X1, X2))
     , and(mark(X1), X2) -> mark(and(X1, X2))
     , isNePal(mark(X)) -> mark(isNePal(X))
     , proper(__(X1, X2)) -> __(proper(X1), proper(X2))
     , proper(nil()) -> ok(nil())
     , proper(and(X1, X2)) -> and(proper(X1), proper(X2))
     , proper(tt()) -> ok(tt())
     , proper(isNePal(X)) -> isNePal(proper(X))
     , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
     , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
     , isNePal(ok(X)) -> ok(isNePal(X))
     , top(mark(X)) -> top(proper(X))
     , top(ok(X)) -> top(active(X))}

Details:         
  We have computed the following set of weak (innermost) dependency pairs:
   {  active^#(__(__(X, Y), Z)) -> c_0(__^#(X, __(Y, Z)))
    , active^#(__(X, nil())) -> c_1()
    , active^#(__(nil(), X)) -> c_2()
    , active^#(and(tt(), X)) -> c_3()
    , active^#(isNePal(__(I, __(P, I)))) -> c_4()
    , active^#(__(X1, X2)) -> c_5(__^#(active(X1), X2))
    , active^#(__(X1, X2)) -> c_6(__^#(X1, active(X2)))
    , active^#(and(X1, X2)) -> c_7(and^#(active(X1), X2))
    , active^#(isNePal(X)) -> c_8(isNePal^#(active(X)))
    , __^#(mark(X1), X2) -> c_9(__^#(X1, X2))
    , __^#(X1, mark(X2)) -> c_10(__^#(X1, X2))
    , and^#(mark(X1), X2) -> c_11(and^#(X1, X2))
    , isNePal^#(mark(X)) -> c_12(isNePal^#(X))
    , proper^#(__(X1, X2)) -> c_13(__^#(proper(X1), proper(X2)))
    , proper^#(nil()) -> c_14()
    , proper^#(and(X1, X2)) -> c_15(and^#(proper(X1), proper(X2)))
    , proper^#(tt()) -> c_16()
    , proper^#(isNePal(X)) -> c_17(isNePal^#(proper(X)))
    , __^#(ok(X1), ok(X2)) -> c_18(__^#(X1, X2))
    , and^#(ok(X1), ok(X2)) -> c_19(and^#(X1, X2))
    , isNePal^#(ok(X)) -> c_20(isNePal^#(X))
    , top^#(mark(X)) -> c_21(top^#(proper(X)))
    , top^#(ok(X)) -> c_22(top^#(active(X)))}
  
  The usable rules are:
   {  active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z)))
    , active(__(X, nil())) -> mark(X)
    , active(__(nil(), X)) -> mark(X)
    , active(and(tt(), X)) -> mark(X)
    , active(isNePal(__(I, __(P, I)))) -> mark(tt())
    , active(__(X1, X2)) -> __(active(X1), X2)
    , active(__(X1, X2)) -> __(X1, active(X2))
    , active(and(X1, X2)) -> and(active(X1), X2)
    , active(isNePal(X)) -> isNePal(active(X))
    , __(mark(X1), X2) -> mark(__(X1, X2))
    , __(X1, mark(X2)) -> mark(__(X1, X2))
    , proper(__(X1, X2)) -> __(proper(X1), proper(X2))
    , proper(nil()) -> ok(nil())
    , proper(and(X1, X2)) -> and(proper(X1), proper(X2))
    , proper(tt()) -> ok(tt())
    , proper(isNePal(X)) -> isNePal(proper(X))
    , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
    , and(mark(X1), X2) -> mark(and(X1, X2))
    , isNePal(mark(X)) -> mark(isNePal(X))
    , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
    , isNePal(ok(X)) -> ok(isNePal(X))}
  
  The estimated dependency graph contains the following edges:
   {active^#(__(__(X, Y), Z)) -> c_0(__^#(X, __(Y, Z)))}
     ==> {__^#(ok(X1), ok(X2)) -> c_18(__^#(X1, X2))}
   {active^#(__(__(X, Y), Z)) -> c_0(__^#(X, __(Y, Z)))}
     ==> {__^#(X1, mark(X2)) -> c_10(__^#(X1, X2))}
   {active^#(__(__(X, Y), Z)) -> c_0(__^#(X, __(Y, Z)))}
     ==> {__^#(mark(X1), X2) -> c_9(__^#(X1, X2))}
   {active^#(__(X1, X2)) -> c_5(__^#(active(X1), X2))}
     ==> {__^#(ok(X1), ok(X2)) -> c_18(__^#(X1, X2))}
   {active^#(__(X1, X2)) -> c_5(__^#(active(X1), X2))}
     ==> {__^#(X1, mark(X2)) -> c_10(__^#(X1, X2))}
   {active^#(__(X1, X2)) -> c_5(__^#(active(X1), X2))}
     ==> {__^#(mark(X1), X2) -> c_9(__^#(X1, X2))}
   {active^#(__(X1, X2)) -> c_6(__^#(X1, active(X2)))}
     ==> {__^#(ok(X1), ok(X2)) -> c_18(__^#(X1, X2))}
   {active^#(__(X1, X2)) -> c_6(__^#(X1, active(X2)))}
     ==> {__^#(X1, mark(X2)) -> c_10(__^#(X1, X2))}
   {active^#(__(X1, X2)) -> c_6(__^#(X1, active(X2)))}
     ==> {__^#(mark(X1), X2) -> c_9(__^#(X1, X2))}
   {active^#(and(X1, X2)) -> c_7(and^#(active(X1), X2))}
     ==> {and^#(ok(X1), ok(X2)) -> c_19(and^#(X1, X2))}
   {active^#(and(X1, X2)) -> c_7(and^#(active(X1), X2))}
     ==> {and^#(mark(X1), X2) -> c_11(and^#(X1, X2))}
   {active^#(isNePal(X)) -> c_8(isNePal^#(active(X)))}
     ==> {isNePal^#(ok(X)) -> c_20(isNePal^#(X))}
   {active^#(isNePal(X)) -> c_8(isNePal^#(active(X)))}
     ==> {isNePal^#(mark(X)) -> c_12(isNePal^#(X))}
   {__^#(mark(X1), X2) -> c_9(__^#(X1, X2))}
     ==> {__^#(ok(X1), ok(X2)) -> c_18(__^#(X1, X2))}
   {__^#(mark(X1), X2) -> c_9(__^#(X1, X2))}
     ==> {__^#(X1, mark(X2)) -> c_10(__^#(X1, X2))}
   {__^#(mark(X1), X2) -> c_9(__^#(X1, X2))}
     ==> {__^#(mark(X1), X2) -> c_9(__^#(X1, X2))}
   {__^#(X1, mark(X2)) -> c_10(__^#(X1, X2))}
     ==> {__^#(ok(X1), ok(X2)) -> c_18(__^#(X1, X2))}
   {__^#(X1, mark(X2)) -> c_10(__^#(X1, X2))}
     ==> {__^#(X1, mark(X2)) -> c_10(__^#(X1, X2))}
   {__^#(X1, mark(X2)) -> c_10(__^#(X1, X2))}
     ==> {__^#(mark(X1), X2) -> c_9(__^#(X1, X2))}
   {and^#(mark(X1), X2) -> c_11(and^#(X1, X2))}
     ==> {and^#(ok(X1), ok(X2)) -> c_19(and^#(X1, X2))}
   {and^#(mark(X1), X2) -> c_11(and^#(X1, X2))}
     ==> {and^#(mark(X1), X2) -> c_11(and^#(X1, X2))}
   {isNePal^#(mark(X)) -> c_12(isNePal^#(X))}
     ==> {isNePal^#(ok(X)) -> c_20(isNePal^#(X))}
   {isNePal^#(mark(X)) -> c_12(isNePal^#(X))}
     ==> {isNePal^#(mark(X)) -> c_12(isNePal^#(X))}
   {proper^#(__(X1, X2)) -> c_13(__^#(proper(X1), proper(X2)))}
     ==> {__^#(ok(X1), ok(X2)) -> c_18(__^#(X1, X2))}
   {proper^#(__(X1, X2)) -> c_13(__^#(proper(X1), proper(X2)))}
     ==> {__^#(X1, mark(X2)) -> c_10(__^#(X1, X2))}
   {proper^#(__(X1, X2)) -> c_13(__^#(proper(X1), proper(X2)))}
     ==> {__^#(mark(X1), X2) -> c_9(__^#(X1, X2))}
   {proper^#(and(X1, X2)) -> c_15(and^#(proper(X1), proper(X2)))}
     ==> {and^#(ok(X1), ok(X2)) -> c_19(and^#(X1, X2))}
   {proper^#(and(X1, X2)) -> c_15(and^#(proper(X1), proper(X2)))}
     ==> {and^#(mark(X1), X2) -> c_11(and^#(X1, X2))}
   {proper^#(isNePal(X)) -> c_17(isNePal^#(proper(X)))}
     ==> {isNePal^#(ok(X)) -> c_20(isNePal^#(X))}
   {proper^#(isNePal(X)) -> c_17(isNePal^#(proper(X)))}
     ==> {isNePal^#(mark(X)) -> c_12(isNePal^#(X))}
   {__^#(ok(X1), ok(X2)) -> c_18(__^#(X1, X2))}
     ==> {__^#(ok(X1), ok(X2)) -> c_18(__^#(X1, X2))}
   {__^#(ok(X1), ok(X2)) -> c_18(__^#(X1, X2))}
     ==> {__^#(X1, mark(X2)) -> c_10(__^#(X1, X2))}
   {__^#(ok(X1), ok(X2)) -> c_18(__^#(X1, X2))}
     ==> {__^#(mark(X1), X2) -> c_9(__^#(X1, X2))}
   {and^#(ok(X1), ok(X2)) -> c_19(and^#(X1, X2))}
     ==> {and^#(ok(X1), ok(X2)) -> c_19(and^#(X1, X2))}
   {and^#(ok(X1), ok(X2)) -> c_19(and^#(X1, X2))}
     ==> {and^#(mark(X1), X2) -> c_11(and^#(X1, X2))}
   {isNePal^#(ok(X)) -> c_20(isNePal^#(X))}
     ==> {isNePal^#(ok(X)) -> c_20(isNePal^#(X))}
   {isNePal^#(ok(X)) -> c_20(isNePal^#(X))}
     ==> {isNePal^#(mark(X)) -> c_12(isNePal^#(X))}
   {top^#(mark(X)) -> c_21(top^#(proper(X)))}
     ==> {top^#(ok(X)) -> c_22(top^#(active(X)))}
   {top^#(mark(X)) -> c_21(top^#(proper(X)))}
     ==> {top^#(mark(X)) -> c_21(top^#(proper(X)))}
   {top^#(ok(X)) -> c_22(top^#(active(X)))}
     ==> {top^#(ok(X)) -> c_22(top^#(active(X)))}
   {top^#(ok(X)) -> c_22(top^#(active(X)))}
     ==> {top^#(mark(X)) -> c_21(top^#(proper(X)))}
  
  We consider the following path(s):
   1) {  top^#(mark(X)) -> c_21(top^#(proper(X)))
       , top^#(ok(X)) -> c_22(top^#(active(X)))}
      
      The usable rules for this path are the following:
      {  active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z)))
       , active(__(X, nil())) -> mark(X)
       , active(__(nil(), X)) -> mark(X)
       , active(and(tt(), X)) -> mark(X)
       , active(isNePal(__(I, __(P, I)))) -> mark(tt())
       , active(__(X1, X2)) -> __(active(X1), X2)
       , active(__(X1, X2)) -> __(X1, active(X2))
       , active(and(X1, X2)) -> and(active(X1), X2)
       , active(isNePal(X)) -> isNePal(active(X))
       , proper(__(X1, X2)) -> __(proper(X1), proper(X2))
       , proper(nil()) -> ok(nil())
       , proper(and(X1, X2)) -> and(proper(X1), proper(X2))
       , proper(tt()) -> ok(tt())
       , proper(isNePal(X)) -> isNePal(proper(X))
       , __(mark(X1), X2) -> mark(__(X1, X2))
       , __(X1, mark(X2)) -> mark(__(X1, X2))
       , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
       , and(mark(X1), X2) -> mark(and(X1, X2))
       , isNePal(mark(X)) -> mark(isNePal(X))
       , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
       , isNePal(ok(X)) -> ok(isNePal(X))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z)))
               , active(__(X, nil())) -> mark(X)
               , active(__(nil(), X)) -> mark(X)
               , active(and(tt(), X)) -> mark(X)
               , active(isNePal(__(I, __(P, I)))) -> mark(tt())
               , active(__(X1, X2)) -> __(active(X1), X2)
               , active(__(X1, X2)) -> __(X1, active(X2))
               , active(and(X1, X2)) -> and(active(X1), X2)
               , active(isNePal(X)) -> isNePal(active(X))
               , proper(__(X1, X2)) -> __(proper(X1), proper(X2))
               , proper(nil()) -> ok(nil())
               , proper(and(X1, X2)) -> and(proper(X1), proper(X2))
               , proper(tt()) -> ok(tt())
               , proper(isNePal(X)) -> isNePal(proper(X))
               , __(mark(X1), X2) -> mark(__(X1, X2))
               , __(X1, mark(X2)) -> mark(__(X1, X2))
               , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
               , and(mark(X1), X2) -> mark(and(X1, X2))
               , isNePal(mark(X)) -> mark(isNePal(X))
               , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
               , isNePal(ok(X)) -> ok(isNePal(X))
               , top^#(mark(X)) -> c_21(top^#(proper(X)))
               , top^#(ok(X)) -> c_22(top^#(active(X)))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
             , top^#(ok(X)) -> c_22(top^#(active(X)))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  __(ok(X1), ok(X2)) -> ok(__(X1, X2))
               , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
               , top^#(ok(X)) -> c_22(top^#(active(X)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [1]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isNePal(x1) = [1] x1 + [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [5]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4() = [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_8(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14() = [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16() = [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  top^#(x1) = [1] x1 + [0]
                  c_21(x1) = [1] x1 + [0]
                  c_22(x1) = [1] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {active(isNePal(__(I, __(P, I)))) -> mark(tt())}
            and weakly orienting the rules
            {  __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
             , top^#(ok(X)) -> c_22(top^#(active(X)))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active(isNePal(__(I, __(P, I)))) -> mark(tt())}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [1]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isNePal(x1) = [1] x1 + [2]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [2]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4() = [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_8(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14() = [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16() = [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  top^#(x1) = [1] x1 + [7]
                  c_21(x1) = [1] x1 + [0]
                  c_22(x1) = [1] x1 + [1]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {active(and(tt(), X)) -> mark(X)}
            and weakly orienting the rules
            {  active(isNePal(__(I, __(P, I)))) -> mark(tt())
             , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
             , top^#(ok(X)) -> c_22(top^#(active(X)))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active(and(tt(), X)) -> mark(X)}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [1]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [4]
                  tt() = [0]
                  isNePal(x1) = [1] x1 + [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [8]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4() = [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_8(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14() = [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16() = [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  top^#(x1) = [1] x1 + [15]
                  c_21(x1) = [1] x1 + [4]
                  c_22(x1) = [1] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  proper(nil()) -> ok(nil())
             , proper(tt()) -> ok(tt())}
            and weakly orienting the rules
            {  active(and(tt(), X)) -> mark(X)
             , active(isNePal(__(I, __(P, I)))) -> mark(tt())
             , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
             , top^#(ok(X)) -> c_22(top^#(active(X)))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  proper(nil()) -> ok(nil())
               , proper(tt()) -> ok(tt())}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [1]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isNePal(x1) = [1] x1 + [4]
                  proper(x1) = [1] x1 + [8]
                  ok(x1) = [1] x1 + [1]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4() = [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_8(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14() = [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16() = [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  top^#(x1) = [1] x1 + [0]
                  c_21(x1) = [1] x1 + [8]
                  c_22(x1) = [1] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  active(__(X, nil())) -> mark(X)
             , active(__(nil(), X)) -> mark(X)}
            and weakly orienting the rules
            {  proper(nil()) -> ok(nil())
             , proper(tt()) -> ok(tt())
             , active(and(tt(), X)) -> mark(X)
             , active(isNePal(__(I, __(P, I)))) -> mark(tt())
             , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
             , top^#(ok(X)) -> c_22(top^#(active(X)))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  active(__(X, nil())) -> mark(X)
               , active(__(nil(), X)) -> mark(X)}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [3]
                  nil() = [3]
                  and(x1, x2) = [1] x1 + [1] x2 + [8]
                  tt() = [6]
                  isNePal(x1) = [1] x1 + [9]
                  proper(x1) = [1] x1 + [8]
                  ok(x1) = [1] x1 + [8]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4() = [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_8(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14() = [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16() = [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  top^#(x1) = [1] x1 + [8]
                  c_21(x1) = [1] x1 + [1]
                  c_22(x1) = [1] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {top^#(mark(X)) -> c_21(top^#(proper(X)))}
            and weakly orienting the rules
            {  active(__(X, nil())) -> mark(X)
             , active(__(nil(), X)) -> mark(X)
             , proper(nil()) -> ok(nil())
             , proper(tt()) -> ok(tt())
             , active(and(tt(), X)) -> mark(X)
             , active(isNePal(__(I, __(P, I)))) -> mark(tt())
             , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
             , top^#(ok(X)) -> c_22(top^#(active(X)))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {top^#(mark(X)) -> c_21(top^#(proper(X)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [0]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [4]
                  nil() = [4]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [8]
                  isNePal(x1) = [1] x1 + [12]
                  proper(x1) = [1] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4() = [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_8(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14() = [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16() = [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  top^#(x1) = [1] x1 + [0]
                  c_21(x1) = [1] x1 + [0]
                  c_22(x1) = [1] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z)))
                 , active(__(X1, X2)) -> __(active(X1), X2)
                 , active(__(X1, X2)) -> __(X1, active(X2))
                 , active(and(X1, X2)) -> and(active(X1), X2)
                 , active(isNePal(X)) -> isNePal(active(X))
                 , proper(__(X1, X2)) -> __(proper(X1), proper(X2))
                 , proper(and(X1, X2)) -> and(proper(X1), proper(X2))
                 , proper(isNePal(X)) -> isNePal(proper(X))
                 , __(mark(X1), X2) -> mark(__(X1, X2))
                 , __(X1, mark(X2)) -> mark(__(X1, X2))
                 , and(mark(X1), X2) -> mark(and(X1, X2))
                 , isNePal(mark(X)) -> mark(isNePal(X))
                 , isNePal(ok(X)) -> ok(isNePal(X))}
              Weak Rules:
                {  top^#(mark(X)) -> c_21(top^#(proper(X)))
                 , active(__(X, nil())) -> mark(X)
                 , active(__(nil(), X)) -> mark(X)
                 , proper(nil()) -> ok(nil())
                 , proper(tt()) -> ok(tt())
                 , active(and(tt(), X)) -> mark(X)
                 , active(isNePal(__(I, __(P, I)))) -> mark(tt())
                 , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
                 , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
                 , top^#(ok(X)) -> c_22(top^#(active(X)))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z)))
                   , active(__(X1, X2)) -> __(active(X1), X2)
                   , active(__(X1, X2)) -> __(X1, active(X2))
                   , active(and(X1, X2)) -> and(active(X1), X2)
                   , active(isNePal(X)) -> isNePal(active(X))
                   , proper(__(X1, X2)) -> __(proper(X1), proper(X2))
                   , proper(and(X1, X2)) -> and(proper(X1), proper(X2))
                   , proper(isNePal(X)) -> isNePal(proper(X))
                   , __(mark(X1), X2) -> mark(__(X1, X2))
                   , __(X1, mark(X2)) -> mark(__(X1, X2))
                   , and(mark(X1), X2) -> mark(and(X1, X2))
                   , isNePal(mark(X)) -> mark(isNePal(X))
                   , isNePal(ok(X)) -> ok(isNePal(X))}
                Weak Rules:
                  {  top^#(mark(X)) -> c_21(top^#(proper(X)))
                   , active(__(X, nil())) -> mark(X)
                   , active(__(nil(), X)) -> mark(X)
                   , proper(nil()) -> ok(nil())
                   , proper(tt()) -> ok(tt())
                   , active(and(tt(), X)) -> mark(X)
                   , active(isNePal(__(I, __(P, I)))) -> mark(tt())
                   , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
                   , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
                   , top^#(ok(X)) -> c_22(top^#(active(X)))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  active_0(2) -> 6
                 , mark_0(2) -> 2
                 , nil_0() -> 2
                 , tt_0() -> 2
                 , proper_0(2) -> 4
                 , ok_0(2) -> 2
                 , ok_0(2) -> 4
                 , top^#_0(2) -> 1
                 , top^#_0(4) -> 3
                 , top^#_0(6) -> 5
                 , c_21_0(3) -> 1
                 , c_22_0(5) -> 1
                 , c_22_0(5) -> 3}
      
   2) {  active^#(__(X1, X2)) -> c_6(__^#(X1, active(X2)))
       , __^#(ok(X1), ok(X2)) -> c_18(__^#(X1, X2))
       , __^#(X1, mark(X2)) -> c_10(__^#(X1, X2))
       , __^#(mark(X1), X2) -> c_9(__^#(X1, X2))}
      
      The usable rules for this path are the following:
      {  active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z)))
       , active(__(X, nil())) -> mark(X)
       , active(__(nil(), X)) -> mark(X)
       , active(and(tt(), X)) -> mark(X)
       , active(isNePal(__(I, __(P, I)))) -> mark(tt())
       , active(__(X1, X2)) -> __(active(X1), X2)
       , active(__(X1, X2)) -> __(X1, active(X2))
       , active(and(X1, X2)) -> and(active(X1), X2)
       , active(isNePal(X)) -> isNePal(active(X))
       , __(mark(X1), X2) -> mark(__(X1, X2))
       , __(X1, mark(X2)) -> mark(__(X1, X2))
       , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
       , and(mark(X1), X2) -> mark(and(X1, X2))
       , isNePal(mark(X)) -> mark(isNePal(X))
       , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
       , isNePal(ok(X)) -> ok(isNePal(X))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z)))
               , active(__(X, nil())) -> mark(X)
               , active(__(nil(), X)) -> mark(X)
               , active(and(tt(), X)) -> mark(X)
               , active(isNePal(__(I, __(P, I)))) -> mark(tt())
               , active(__(X1, X2)) -> __(active(X1), X2)
               , active(__(X1, X2)) -> __(X1, active(X2))
               , active(and(X1, X2)) -> and(active(X1), X2)
               , active(isNePal(X)) -> isNePal(active(X))
               , __(mark(X1), X2) -> mark(__(X1, X2))
               , __(X1, mark(X2)) -> mark(__(X1, X2))
               , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
               , and(mark(X1), X2) -> mark(and(X1, X2))
               , isNePal(mark(X)) -> mark(isNePal(X))
               , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
               , isNePal(ok(X)) -> ok(isNePal(X))
               , active^#(__(X1, X2)) -> c_6(__^#(X1, active(X2)))
               , __^#(ok(X1), ok(X2)) -> c_18(__^#(X1, X2))
               , __^#(X1, mark(X2)) -> c_10(__^#(X1, X2))
               , __^#(mark(X1), X2) -> c_9(__^#(X1, X2))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  active(and(tt(), X)) -> mark(X)
             , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
             , __^#(ok(X1), ok(X2)) -> c_18(__^#(X1, X2))
             , __^#(X1, mark(X2)) -> c_10(__^#(X1, X2))
             , __^#(mark(X1), X2) -> c_9(__^#(X1, X2))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  active(and(tt(), X)) -> mark(X)
               , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
               , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
               , __^#(ok(X1), ok(X2)) -> c_18(__^#(X1, X2))
               , __^#(X1, mark(X2)) -> c_10(__^#(X1, X2))
               , __^#(mark(X1), X2) -> c_9(__^#(X1, X2))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [1]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [3]
                  tt() = [0]
                  isNePal(x1) = [1] x1 + [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [8]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [1] x1 + [1] x2 + [1]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4() = [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [1] x1 + [1]
                  c_7(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_8(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_9(x1) = [1] x1 + [0]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14() = [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16() = [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [1] x1 + [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {active^#(__(X1, X2)) -> c_6(__^#(X1, active(X2)))}
            and weakly orienting the rules
            {  active(and(tt(), X)) -> mark(X)
             , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
             , __^#(ok(X1), ok(X2)) -> c_18(__^#(X1, X2))
             , __^#(X1, mark(X2)) -> c_10(__^#(X1, X2))
             , __^#(mark(X1), X2) -> c_9(__^#(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active^#(__(X1, X2)) -> c_6(__^#(X1, active(X2)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [1]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isNePal(x1) = [1] x1 + [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [8]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [9]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4() = [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [1] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_8(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_9(x1) = [1] x1 + [1]
                  c_10(x1) = [1] x1 + [1]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14() = [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16() = [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [1] x1 + [1]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {active(isNePal(__(I, __(P, I)))) -> mark(tt())}
            and weakly orienting the rules
            {  active^#(__(X1, X2)) -> c_6(__^#(X1, active(X2)))
             , active(and(tt(), X)) -> mark(X)
             , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
             , __^#(ok(X1), ok(X2)) -> c_18(__^#(X1, X2))
             , __^#(X1, mark(X2)) -> c_10(__^#(X1, X2))
             , __^#(mark(X1), X2) -> c_9(__^#(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active(isNePal(__(I, __(P, I)))) -> mark(tt())}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [1]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isNePal(x1) = [1] x1 + [2]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [8]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4() = [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [1] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_8(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_9(x1) = [1] x1 + [1]
                  c_10(x1) = [1] x1 + [1]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14() = [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16() = [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [1] x1 + [1]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  active(__(X, nil())) -> mark(X)
             , active(__(nil(), X)) -> mark(X)}
            and weakly orienting the rules
            {  active(isNePal(__(I, __(P, I)))) -> mark(tt())
             , active^#(__(X1, X2)) -> c_6(__^#(X1, active(X2)))
             , active(and(tt(), X)) -> mark(X)
             , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
             , __^#(ok(X1), ok(X2)) -> c_18(__^#(X1, X2))
             , __^#(X1, mark(X2)) -> c_10(__^#(X1, X2))
             , __^#(mark(X1), X2) -> c_9(__^#(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  active(__(X, nil())) -> mark(X)
               , active(__(nil(), X)) -> mark(X)}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [0]
                  __(x1, x2) = [1] x1 + [1] x2 + [9]
                  mark(x1) = [1] x1 + [0]
                  nil() = [8]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isNePal(x1) = [1] x1 + [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4() = [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [1] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_8(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_9(x1) = [1] x1 + [0]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14() = [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16() = [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [1] x1 + [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z)))}
            and weakly orienting the rules
            {  active(__(X, nil())) -> mark(X)
             , active(__(nil(), X)) -> mark(X)
             , active(isNePal(__(I, __(P, I)))) -> mark(tt())
             , active^#(__(X1, X2)) -> c_6(__^#(X1, active(X2)))
             , active(and(tt(), X)) -> mark(X)
             , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
             , __^#(ok(X1), ok(X2)) -> c_18(__^#(X1, X2))
             , __^#(X1, mark(X2)) -> c_10(__^#(X1, X2))
             , __^#(mark(X1), X2) -> c_9(__^#(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [0]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isNePal(x1) = [1] x1 + [2]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [2]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4() = [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [1] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_8(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_9(x1) = [1] x1 + [0]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14() = [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16() = [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [1] x1 + [1]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  active(__(X1, X2)) -> __(active(X1), X2)
                 , active(__(X1, X2)) -> __(X1, active(X2))
                 , active(and(X1, X2)) -> and(active(X1), X2)
                 , active(isNePal(X)) -> isNePal(active(X))
                 , __(mark(X1), X2) -> mark(__(X1, X2))
                 , __(X1, mark(X2)) -> mark(__(X1, X2))
                 , and(mark(X1), X2) -> mark(and(X1, X2))
                 , isNePal(mark(X)) -> mark(isNePal(X))
                 , isNePal(ok(X)) -> ok(isNePal(X))}
              Weak Rules:
                {  active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z)))
                 , active(__(X, nil())) -> mark(X)
                 , active(__(nil(), X)) -> mark(X)
                 , active(isNePal(__(I, __(P, I)))) -> mark(tt())
                 , active^#(__(X1, X2)) -> c_6(__^#(X1, active(X2)))
                 , active(and(tt(), X)) -> mark(X)
                 , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
                 , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
                 , __^#(ok(X1), ok(X2)) -> c_18(__^#(X1, X2))
                 , __^#(X1, mark(X2)) -> c_10(__^#(X1, X2))
                 , __^#(mark(X1), X2) -> c_9(__^#(X1, X2))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  active(__(X1, X2)) -> __(active(X1), X2)
                   , active(__(X1, X2)) -> __(X1, active(X2))
                   , active(and(X1, X2)) -> and(active(X1), X2)
                   , active(isNePal(X)) -> isNePal(active(X))
                   , __(mark(X1), X2) -> mark(__(X1, X2))
                   , __(X1, mark(X2)) -> mark(__(X1, X2))
                   , and(mark(X1), X2) -> mark(and(X1, X2))
                   , isNePal(mark(X)) -> mark(isNePal(X))
                   , isNePal(ok(X)) -> ok(isNePal(X))}
                Weak Rules:
                  {  active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z)))
                   , active(__(X, nil())) -> mark(X)
                   , active(__(nil(), X)) -> mark(X)
                   , active(isNePal(__(I, __(P, I)))) -> mark(tt())
                   , active^#(__(X1, X2)) -> c_6(__^#(X1, active(X2)))
                   , active(and(tt(), X)) -> mark(X)
                   , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
                   , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
                   , __^#(ok(X1), ok(X2)) -> c_18(__^#(X1, X2))
                   , __^#(X1, mark(X2)) -> c_10(__^#(X1, X2))
                   , __^#(mark(X1), X2) -> c_9(__^#(X1, X2))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  mark_0(2) -> 2
                 , nil_0() -> 2
                 , tt_0() -> 2
                 , ok_0(2) -> 2
                 , active^#_0(2) -> 1
                 , __^#_0(2, 2) -> 1
                 , c_9_0(1) -> 1
                 , c_10_0(1) -> 1
                 , c_18_0(1) -> 1}
      
   3) {  active^#(__(X1, X2)) -> c_5(__^#(active(X1), X2))
       , __^#(ok(X1), ok(X2)) -> c_18(__^#(X1, X2))
       , __^#(X1, mark(X2)) -> c_10(__^#(X1, X2))
       , __^#(mark(X1), X2) -> c_9(__^#(X1, X2))}
      
      The usable rules for this path are the following:
      {  active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z)))
       , active(__(X, nil())) -> mark(X)
       , active(__(nil(), X)) -> mark(X)
       , active(and(tt(), X)) -> mark(X)
       , active(isNePal(__(I, __(P, I)))) -> mark(tt())
       , active(__(X1, X2)) -> __(active(X1), X2)
       , active(__(X1, X2)) -> __(X1, active(X2))
       , active(and(X1, X2)) -> and(active(X1), X2)
       , active(isNePal(X)) -> isNePal(active(X))
       , __(mark(X1), X2) -> mark(__(X1, X2))
       , __(X1, mark(X2)) -> mark(__(X1, X2))
       , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
       , and(mark(X1), X2) -> mark(and(X1, X2))
       , isNePal(mark(X)) -> mark(isNePal(X))
       , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
       , isNePal(ok(X)) -> ok(isNePal(X))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z)))
               , active(__(X, nil())) -> mark(X)
               , active(__(nil(), X)) -> mark(X)
               , active(and(tt(), X)) -> mark(X)
               , active(isNePal(__(I, __(P, I)))) -> mark(tt())
               , active(__(X1, X2)) -> __(active(X1), X2)
               , active(__(X1, X2)) -> __(X1, active(X2))
               , active(and(X1, X2)) -> and(active(X1), X2)
               , active(isNePal(X)) -> isNePal(active(X))
               , __(mark(X1), X2) -> mark(__(X1, X2))
               , __(X1, mark(X2)) -> mark(__(X1, X2))
               , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
               , and(mark(X1), X2) -> mark(and(X1, X2))
               , isNePal(mark(X)) -> mark(isNePal(X))
               , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
               , isNePal(ok(X)) -> ok(isNePal(X))
               , active^#(__(X1, X2)) -> c_5(__^#(active(X1), X2))
               , __^#(ok(X1), ok(X2)) -> c_18(__^#(X1, X2))
               , __^#(X1, mark(X2)) -> c_10(__^#(X1, X2))
               , __^#(mark(X1), X2) -> c_9(__^#(X1, X2))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  active(and(tt(), X)) -> mark(X)
             , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
             , __^#(ok(X1), ok(X2)) -> c_18(__^#(X1, X2))
             , __^#(X1, mark(X2)) -> c_10(__^#(X1, X2))
             , __^#(mark(X1), X2) -> c_9(__^#(X1, X2))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  active(and(tt(), X)) -> mark(X)
               , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
               , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
               , __^#(ok(X1), ok(X2)) -> c_18(__^#(X1, X2))
               , __^#(X1, mark(X2)) -> c_10(__^#(X1, X2))
               , __^#(mark(X1), X2) -> c_9(__^#(X1, X2))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [1]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [3]
                  tt() = [0]
                  isNePal(x1) = [1] x1 + [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [8]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [1] x1 + [1] x2 + [1]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4() = [0]
                  c_5(x1) = [1] x1 + [1]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_8(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_9(x1) = [1] x1 + [0]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14() = [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16() = [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [1] x1 + [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {active^#(__(X1, X2)) -> c_5(__^#(active(X1), X2))}
            and weakly orienting the rules
            {  active(and(tt(), X)) -> mark(X)
             , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
             , __^#(ok(X1), ok(X2)) -> c_18(__^#(X1, X2))
             , __^#(X1, mark(X2)) -> c_10(__^#(X1, X2))
             , __^#(mark(X1), X2) -> c_9(__^#(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active^#(__(X1, X2)) -> c_5(__^#(active(X1), X2))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [1]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isNePal(x1) = [1] x1 + [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [8]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [9]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4() = [0]
                  c_5(x1) = [1] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_8(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_9(x1) = [1] x1 + [1]
                  c_10(x1) = [1] x1 + [1]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14() = [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16() = [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [1] x1 + [1]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {active(isNePal(__(I, __(P, I)))) -> mark(tt())}
            and weakly orienting the rules
            {  active^#(__(X1, X2)) -> c_5(__^#(active(X1), X2))
             , active(and(tt(), X)) -> mark(X)
             , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
             , __^#(ok(X1), ok(X2)) -> c_18(__^#(X1, X2))
             , __^#(X1, mark(X2)) -> c_10(__^#(X1, X2))
             , __^#(mark(X1), X2) -> c_9(__^#(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active(isNePal(__(I, __(P, I)))) -> mark(tt())}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [1]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isNePal(x1) = [1] x1 + [2]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [8]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4() = [0]
                  c_5(x1) = [1] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_8(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_9(x1) = [1] x1 + [1]
                  c_10(x1) = [1] x1 + [1]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14() = [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16() = [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [1] x1 + [1]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  active(__(X, nil())) -> mark(X)
             , active(__(nil(), X)) -> mark(X)}
            and weakly orienting the rules
            {  active(isNePal(__(I, __(P, I)))) -> mark(tt())
             , active^#(__(X1, X2)) -> c_5(__^#(active(X1), X2))
             , active(and(tt(), X)) -> mark(X)
             , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
             , __^#(ok(X1), ok(X2)) -> c_18(__^#(X1, X2))
             , __^#(X1, mark(X2)) -> c_10(__^#(X1, X2))
             , __^#(mark(X1), X2) -> c_9(__^#(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  active(__(X, nil())) -> mark(X)
               , active(__(nil(), X)) -> mark(X)}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [0]
                  __(x1, x2) = [1] x1 + [1] x2 + [9]
                  mark(x1) = [1] x1 + [0]
                  nil() = [8]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isNePal(x1) = [1] x1 + [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4() = [0]
                  c_5(x1) = [1] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_8(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_9(x1) = [1] x1 + [0]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14() = [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16() = [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [1] x1 + [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z)))}
            and weakly orienting the rules
            {  active(__(X, nil())) -> mark(X)
             , active(__(nil(), X)) -> mark(X)
             , active(isNePal(__(I, __(P, I)))) -> mark(tt())
             , active^#(__(X1, X2)) -> c_5(__^#(active(X1), X2))
             , active(and(tt(), X)) -> mark(X)
             , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
             , __^#(ok(X1), ok(X2)) -> c_18(__^#(X1, X2))
             , __^#(X1, mark(X2)) -> c_10(__^#(X1, X2))
             , __^#(mark(X1), X2) -> c_9(__^#(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [0]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isNePal(x1) = [1] x1 + [2]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [2]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4() = [0]
                  c_5(x1) = [1] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_8(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_9(x1) = [1] x1 + [0]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14() = [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16() = [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [1] x1 + [1]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  active(__(X1, X2)) -> __(active(X1), X2)
                 , active(__(X1, X2)) -> __(X1, active(X2))
                 , active(and(X1, X2)) -> and(active(X1), X2)
                 , active(isNePal(X)) -> isNePal(active(X))
                 , __(mark(X1), X2) -> mark(__(X1, X2))
                 , __(X1, mark(X2)) -> mark(__(X1, X2))
                 , and(mark(X1), X2) -> mark(and(X1, X2))
                 , isNePal(mark(X)) -> mark(isNePal(X))
                 , isNePal(ok(X)) -> ok(isNePal(X))}
              Weak Rules:
                {  active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z)))
                 , active(__(X, nil())) -> mark(X)
                 , active(__(nil(), X)) -> mark(X)
                 , active(isNePal(__(I, __(P, I)))) -> mark(tt())
                 , active^#(__(X1, X2)) -> c_5(__^#(active(X1), X2))
                 , active(and(tt(), X)) -> mark(X)
                 , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
                 , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
                 , __^#(ok(X1), ok(X2)) -> c_18(__^#(X1, X2))
                 , __^#(X1, mark(X2)) -> c_10(__^#(X1, X2))
                 , __^#(mark(X1), X2) -> c_9(__^#(X1, X2))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  active(__(X1, X2)) -> __(active(X1), X2)
                   , active(__(X1, X2)) -> __(X1, active(X2))
                   , active(and(X1, X2)) -> and(active(X1), X2)
                   , active(isNePal(X)) -> isNePal(active(X))
                   , __(mark(X1), X2) -> mark(__(X1, X2))
                   , __(X1, mark(X2)) -> mark(__(X1, X2))
                   , and(mark(X1), X2) -> mark(and(X1, X2))
                   , isNePal(mark(X)) -> mark(isNePal(X))
                   , isNePal(ok(X)) -> ok(isNePal(X))}
                Weak Rules:
                  {  active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z)))
                   , active(__(X, nil())) -> mark(X)
                   , active(__(nil(), X)) -> mark(X)
                   , active(isNePal(__(I, __(P, I)))) -> mark(tt())
                   , active^#(__(X1, X2)) -> c_5(__^#(active(X1), X2))
                   , active(and(tt(), X)) -> mark(X)
                   , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
                   , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
                   , __^#(ok(X1), ok(X2)) -> c_18(__^#(X1, X2))
                   , __^#(X1, mark(X2)) -> c_10(__^#(X1, X2))
                   , __^#(mark(X1), X2) -> c_9(__^#(X1, X2))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  mark_0(2) -> 2
                 , nil_0() -> 2
                 , tt_0() -> 2
                 , ok_0(2) -> 2
                 , active^#_0(2) -> 1
                 , __^#_0(2, 2) -> 1
                 , c_9_0(1) -> 1
                 , c_10_0(1) -> 1
                 , c_18_0(1) -> 1}
      
   4) {  active^#(and(X1, X2)) -> c_7(and^#(active(X1), X2))
       , and^#(ok(X1), ok(X2)) -> c_19(and^#(X1, X2))
       , and^#(mark(X1), X2) -> c_11(and^#(X1, X2))}
      
      The usable rules for this path are the following:
      {  active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z)))
       , active(__(X, nil())) -> mark(X)
       , active(__(nil(), X)) -> mark(X)
       , active(and(tt(), X)) -> mark(X)
       , active(isNePal(__(I, __(P, I)))) -> mark(tt())
       , active(__(X1, X2)) -> __(active(X1), X2)
       , active(__(X1, X2)) -> __(X1, active(X2))
       , active(and(X1, X2)) -> and(active(X1), X2)
       , active(isNePal(X)) -> isNePal(active(X))
       , __(mark(X1), X2) -> mark(__(X1, X2))
       , __(X1, mark(X2)) -> mark(__(X1, X2))
       , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
       , and(mark(X1), X2) -> mark(and(X1, X2))
       , isNePal(mark(X)) -> mark(isNePal(X))
       , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
       , isNePal(ok(X)) -> ok(isNePal(X))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z)))
               , active(__(X, nil())) -> mark(X)
               , active(__(nil(), X)) -> mark(X)
               , active(and(tt(), X)) -> mark(X)
               , active(isNePal(__(I, __(P, I)))) -> mark(tt())
               , active(__(X1, X2)) -> __(active(X1), X2)
               , active(__(X1, X2)) -> __(X1, active(X2))
               , active(and(X1, X2)) -> and(active(X1), X2)
               , active(isNePal(X)) -> isNePal(active(X))
               , __(mark(X1), X2) -> mark(__(X1, X2))
               , __(X1, mark(X2)) -> mark(__(X1, X2))
               , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
               , and(mark(X1), X2) -> mark(and(X1, X2))
               , isNePal(mark(X)) -> mark(isNePal(X))
               , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
               , isNePal(ok(X)) -> ok(isNePal(X))
               , active^#(and(X1, X2)) -> c_7(and^#(active(X1), X2))
               , and^#(ok(X1), ok(X2)) -> c_19(and^#(X1, X2))
               , and^#(mark(X1), X2) -> c_11(and^#(X1, X2))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
             , and^#(ok(X1), ok(X2)) -> c_19(and^#(X1, X2))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  __(ok(X1), ok(X2)) -> ok(__(X1, X2))
               , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
               , and^#(ok(X1), ok(X2)) -> c_19(and^#(X1, X2))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [1]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isNePal(x1) = [1] x1 + [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [2]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4() = [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [1] x1 + [15]
                  and^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_8(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [1] x1 + [1]
                  c_12(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14() = [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16() = [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
                  c_19(x1) = [1] x1 + [1]
                  c_20(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  active(and(tt(), X)) -> mark(X)
             , active^#(and(X1, X2)) -> c_7(and^#(active(X1), X2))}
            and weakly orienting the rules
            {  __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
             , and^#(ok(X1), ok(X2)) -> c_19(and^#(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  active(and(tt(), X)) -> mark(X)
               , active^#(and(X1, X2)) -> c_7(and^#(active(X1), X2))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [1]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [3]
                  tt() = [0]
                  isNePal(x1) = [1] x1 + [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [8]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4() = [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [1] x1 + [0]
                  and^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_8(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [1] x1 + [1]
                  c_12(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14() = [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16() = [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
                  c_19(x1) = [1] x1 + [1]
                  c_20(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {active(isNePal(__(I, __(P, I)))) -> mark(tt())}
            and weakly orienting the rules
            {  active(and(tt(), X)) -> mark(X)
             , active^#(and(X1, X2)) -> c_7(and^#(active(X1), X2))
             , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
             , and^#(ok(X1), ok(X2)) -> c_19(and^#(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active(isNePal(__(I, __(P, I)))) -> mark(tt())}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [1]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [4]
                  tt() = [0]
                  isNePal(x1) = [1] x1 + [8]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [8]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4() = [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [1] x1 + [0]
                  and^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_8(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [1] x1 + [1]
                  c_12(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14() = [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16() = [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
                  c_19(x1) = [1] x1 + [1]
                  c_20(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {and^#(mark(X1), X2) -> c_11(and^#(X1, X2))}
            and weakly orienting the rules
            {  active(isNePal(__(I, __(P, I)))) -> mark(tt())
             , active(and(tt(), X)) -> mark(X)
             , active^#(and(X1, X2)) -> c_7(and^#(active(X1), X2))
             , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
             , and^#(ok(X1), ok(X2)) -> c_19(and^#(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {and^#(mark(X1), X2) -> c_11(and^#(X1, X2))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [1]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isNePal(x1) = [1] x1 + [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4() = [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [1] x1 + [0]
                  and^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_8(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [1] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14() = [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16() = [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
                  c_19(x1) = [1] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  active(__(X, nil())) -> mark(X)
             , active(__(nil(), X)) -> mark(X)}
            and weakly orienting the rules
            {  and^#(mark(X1), X2) -> c_11(and^#(X1, X2))
             , active(isNePal(__(I, __(P, I)))) -> mark(tt())
             , active(and(tt(), X)) -> mark(X)
             , active^#(and(X1, X2)) -> c_7(and^#(active(X1), X2))
             , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
             , and^#(ok(X1), ok(X2)) -> c_19(and^#(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  active(__(X, nil())) -> mark(X)
               , active(__(nil(), X)) -> mark(X)}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [8]
                  nil() = [10]
                  and(x1, x2) = [1] x1 + [1] x2 + [8]
                  tt() = [0]
                  isNePal(x1) = [1] x1 + [7]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4() = [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [1] x1 + [0]
                  and^#(x1, x2) = [1] x1 + [1] x2 + [8]
                  c_8(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [1] x1 + [1]
                  c_12(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14() = [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16() = [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
                  c_19(x1) = [1] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z)))}
            and weakly orienting the rules
            {  active(__(X, nil())) -> mark(X)
             , active(__(nil(), X)) -> mark(X)
             , and^#(mark(X1), X2) -> c_11(and^#(X1, X2))
             , active(isNePal(__(I, __(P, I)))) -> mark(tt())
             , active(and(tt(), X)) -> mark(X)
             , active^#(and(X1, X2)) -> c_7(and^#(active(X1), X2))
             , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
             , and^#(ok(X1), ok(X2)) -> c_19(and^#(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [4]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [2]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isNePal(x1) = [1] x1 + [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [9]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4() = [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [1] x1 + [1]
                  and^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_8(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [1] x1 + [1]
                  c_12(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14() = [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16() = [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
                  c_19(x1) = [1] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  active(__(X1, X2)) -> __(active(X1), X2)
                 , active(__(X1, X2)) -> __(X1, active(X2))
                 , active(and(X1, X2)) -> and(active(X1), X2)
                 , active(isNePal(X)) -> isNePal(active(X))
                 , __(mark(X1), X2) -> mark(__(X1, X2))
                 , __(X1, mark(X2)) -> mark(__(X1, X2))
                 , and(mark(X1), X2) -> mark(and(X1, X2))
                 , isNePal(mark(X)) -> mark(isNePal(X))
                 , isNePal(ok(X)) -> ok(isNePal(X))}
              Weak Rules:
                {  active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z)))
                 , active(__(X, nil())) -> mark(X)
                 , active(__(nil(), X)) -> mark(X)
                 , and^#(mark(X1), X2) -> c_11(and^#(X1, X2))
                 , active(isNePal(__(I, __(P, I)))) -> mark(tt())
                 , active(and(tt(), X)) -> mark(X)
                 , active^#(and(X1, X2)) -> c_7(and^#(active(X1), X2))
                 , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
                 , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
                 , and^#(ok(X1), ok(X2)) -> c_19(and^#(X1, X2))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  active(__(X1, X2)) -> __(active(X1), X2)
                   , active(__(X1, X2)) -> __(X1, active(X2))
                   , active(and(X1, X2)) -> and(active(X1), X2)
                   , active(isNePal(X)) -> isNePal(active(X))
                   , __(mark(X1), X2) -> mark(__(X1, X2))
                   , __(X1, mark(X2)) -> mark(__(X1, X2))
                   , and(mark(X1), X2) -> mark(and(X1, X2))
                   , isNePal(mark(X)) -> mark(isNePal(X))
                   , isNePal(ok(X)) -> ok(isNePal(X))}
                Weak Rules:
                  {  active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z)))
                   , active(__(X, nil())) -> mark(X)
                   , active(__(nil(), X)) -> mark(X)
                   , and^#(mark(X1), X2) -> c_11(and^#(X1, X2))
                   , active(isNePal(__(I, __(P, I)))) -> mark(tt())
                   , active(and(tt(), X)) -> mark(X)
                   , active^#(and(X1, X2)) -> c_7(and^#(active(X1), X2))
                   , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
                   , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
                   , and^#(ok(X1), ok(X2)) -> c_19(and^#(X1, X2))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  mark_0(3) -> 3
                 , mark_0(4) -> 3
                 , mark_0(6) -> 3
                 , mark_0(9) -> 3
                 , nil_0() -> 4
                 , tt_0() -> 6
                 , ok_0(3) -> 9
                 , ok_0(4) -> 9
                 , ok_0(6) -> 9
                 , ok_0(9) -> 9
                 , active^#_0(3) -> 11
                 , active^#_0(4) -> 11
                 , active^#_0(6) -> 11
                 , active^#_0(9) -> 11
                 , and^#_0(3, 3) -> 21
                 , and^#_0(3, 4) -> 21
                 , and^#_0(3, 6) -> 21
                 , and^#_0(3, 9) -> 21
                 , and^#_0(4, 3) -> 21
                 , and^#_0(4, 4) -> 21
                 , and^#_0(4, 6) -> 21
                 , and^#_0(4, 9) -> 21
                 , and^#_0(6, 3) -> 21
                 , and^#_0(6, 4) -> 21
                 , and^#_0(6, 6) -> 21
                 , and^#_0(6, 9) -> 21
                 , and^#_0(9, 3) -> 21
                 , and^#_0(9, 4) -> 21
                 , and^#_0(9, 6) -> 21
                 , and^#_0(9, 9) -> 21
                 , c_11_0(21) -> 21
                 , c_19_0(21) -> 21}
      
   5) {  active^#(isNePal(X)) -> c_8(isNePal^#(active(X)))
       , isNePal^#(ok(X)) -> c_20(isNePal^#(X))
       , isNePal^#(mark(X)) -> c_12(isNePal^#(X))}
      
      The usable rules for this path are the following:
      {  active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z)))
       , active(__(X, nil())) -> mark(X)
       , active(__(nil(), X)) -> mark(X)
       , active(and(tt(), X)) -> mark(X)
       , active(isNePal(__(I, __(P, I)))) -> mark(tt())
       , active(__(X1, X2)) -> __(active(X1), X2)
       , active(__(X1, X2)) -> __(X1, active(X2))
       , active(and(X1, X2)) -> and(active(X1), X2)
       , active(isNePal(X)) -> isNePal(active(X))
       , __(mark(X1), X2) -> mark(__(X1, X2))
       , __(X1, mark(X2)) -> mark(__(X1, X2))
       , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
       , and(mark(X1), X2) -> mark(and(X1, X2))
       , isNePal(mark(X)) -> mark(isNePal(X))
       , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
       , isNePal(ok(X)) -> ok(isNePal(X))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z)))
               , active(__(X, nil())) -> mark(X)
               , active(__(nil(), X)) -> mark(X)
               , active(and(tt(), X)) -> mark(X)
               , active(isNePal(__(I, __(P, I)))) -> mark(tt())
               , active(__(X1, X2)) -> __(active(X1), X2)
               , active(__(X1, X2)) -> __(X1, active(X2))
               , active(and(X1, X2)) -> and(active(X1), X2)
               , active(isNePal(X)) -> isNePal(active(X))
               , __(mark(X1), X2) -> mark(__(X1, X2))
               , __(X1, mark(X2)) -> mark(__(X1, X2))
               , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
               , and(mark(X1), X2) -> mark(and(X1, X2))
               , isNePal(mark(X)) -> mark(isNePal(X))
               , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
               , isNePal(ok(X)) -> ok(isNePal(X))
               , active^#(isNePal(X)) -> c_8(isNePal^#(active(X)))
               , isNePal^#(ok(X)) -> c_20(isNePal^#(X))
               , isNePal^#(mark(X)) -> c_12(isNePal^#(X))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  active(and(tt(), X)) -> mark(X)
             , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  active(and(tt(), X)) -> mark(X)
               , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
               , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [1]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [1]
                  tt() = [0]
                  isNePal(x1) = [1] x1 + [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [1]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4() = [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_8(x1) = [1] x1 + [0]
                  isNePal^#(x1) = [1] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [1]
                  proper^#(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14() = [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16() = [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [1] x1 + [1]
                  top^#(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {isNePal^#(mark(X)) -> c_12(isNePal^#(X))}
            and weakly orienting the rules
            {  active(and(tt(), X)) -> mark(X)
             , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {isNePal^#(mark(X)) -> c_12(isNePal^#(X))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [1]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isNePal(x1) = [1] x1 + [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4() = [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_8(x1) = [1] x1 + [1]
                  isNePal^#(x1) = [1] x1 + [1]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14() = [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16() = [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [1] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {isNePal^#(ok(X)) -> c_20(isNePal^#(X))}
            and weakly orienting the rules
            {  isNePal^#(mark(X)) -> c_12(isNePal^#(X))
             , active(and(tt(), X)) -> mark(X)
             , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {isNePal^#(ok(X)) -> c_20(isNePal^#(X))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [1]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isNePal(x1) = [1] x1 + [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [10]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4() = [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_8(x1) = [1] x1 + [1]
                  isNePal^#(x1) = [1] x1 + [3]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14() = [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16() = [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [1] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  active(__(X, nil())) -> mark(X)
             , active(__(nil(), X)) -> mark(X)
             , active(isNePal(__(I, __(P, I)))) -> mark(tt())
             , active^#(isNePal(X)) -> c_8(isNePal^#(active(X)))}
            and weakly orienting the rules
            {  isNePal^#(ok(X)) -> c_20(isNePal^#(X))
             , isNePal^#(mark(X)) -> c_12(isNePal^#(X))
             , active(and(tt(), X)) -> mark(X)
             , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  active(__(X, nil())) -> mark(X)
               , active(__(nil(), X)) -> mark(X)
               , active(isNePal(__(I, __(P, I)))) -> mark(tt())
               , active^#(isNePal(X)) -> c_8(isNePal^#(active(X)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [0]
                  __(x1, x2) = [1] x1 + [1] x2 + [12]
                  mark(x1) = [1] x1 + [0]
                  nil() = [8]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isNePal(x1) = [1] x1 + [8]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4() = [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_8(x1) = [1] x1 + [0]
                  isNePal^#(x1) = [1] x1 + [5]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14() = [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16() = [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [1] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z)))}
            and weakly orienting the rules
            {  active(__(X, nil())) -> mark(X)
             , active(__(nil(), X)) -> mark(X)
             , active(isNePal(__(I, __(P, I)))) -> mark(tt())
             , active^#(isNePal(X)) -> c_8(isNePal^#(active(X)))
             , isNePal^#(ok(X)) -> c_20(isNePal^#(X))
             , isNePal^#(mark(X)) -> c_12(isNePal^#(X))
             , active(and(tt(), X)) -> mark(X)
             , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [0]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isNePal(x1) = [1] x1 + [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [9]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4() = [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_8(x1) = [1] x1 + [2]
                  isNePal^#(x1) = [1] x1 + [5]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14() = [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16() = [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [1] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  active(__(X1, X2)) -> __(active(X1), X2)
                 , active(__(X1, X2)) -> __(X1, active(X2))
                 , active(and(X1, X2)) -> and(active(X1), X2)
                 , active(isNePal(X)) -> isNePal(active(X))
                 , __(mark(X1), X2) -> mark(__(X1, X2))
                 , __(X1, mark(X2)) -> mark(__(X1, X2))
                 , and(mark(X1), X2) -> mark(and(X1, X2))
                 , isNePal(mark(X)) -> mark(isNePal(X))
                 , isNePal(ok(X)) -> ok(isNePal(X))}
              Weak Rules:
                {  active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z)))
                 , active(__(X, nil())) -> mark(X)
                 , active(__(nil(), X)) -> mark(X)
                 , active(isNePal(__(I, __(P, I)))) -> mark(tt())
                 , active^#(isNePal(X)) -> c_8(isNePal^#(active(X)))
                 , isNePal^#(ok(X)) -> c_20(isNePal^#(X))
                 , isNePal^#(mark(X)) -> c_12(isNePal^#(X))
                 , active(and(tt(), X)) -> mark(X)
                 , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
                 , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  active(__(X1, X2)) -> __(active(X1), X2)
                   , active(__(X1, X2)) -> __(X1, active(X2))
                   , active(and(X1, X2)) -> and(active(X1), X2)
                   , active(isNePal(X)) -> isNePal(active(X))
                   , __(mark(X1), X2) -> mark(__(X1, X2))
                   , __(X1, mark(X2)) -> mark(__(X1, X2))
                   , and(mark(X1), X2) -> mark(and(X1, X2))
                   , isNePal(mark(X)) -> mark(isNePal(X))
                   , isNePal(ok(X)) -> ok(isNePal(X))}
                Weak Rules:
                  {  active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z)))
                   , active(__(X, nil())) -> mark(X)
                   , active(__(nil(), X)) -> mark(X)
                   , active(isNePal(__(I, __(P, I)))) -> mark(tt())
                   , active^#(isNePal(X)) -> c_8(isNePal^#(active(X)))
                   , isNePal^#(ok(X)) -> c_20(isNePal^#(X))
                   , isNePal^#(mark(X)) -> c_12(isNePal^#(X))
                   , active(and(tt(), X)) -> mark(X)
                   , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
                   , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  mark_0(3) -> 3
                 , mark_0(4) -> 3
                 , mark_0(6) -> 3
                 , mark_0(9) -> 3
                 , nil_0() -> 4
                 , tt_0() -> 6
                 , ok_0(3) -> 9
                 , ok_0(4) -> 9
                 , ok_0(6) -> 9
                 , ok_0(9) -> 9
                 , active^#_0(3) -> 11
                 , active^#_0(4) -> 11
                 , active^#_0(6) -> 11
                 , active^#_0(9) -> 11
                 , isNePal^#_0(3) -> 23
                 , isNePal^#_0(4) -> 23
                 , isNePal^#_0(6) -> 23
                 , isNePal^#_0(9) -> 23
                 , c_12_0(23) -> 23
                 , c_20_0(23) -> 23}
      
   6) {active^#(__(X1, X2)) -> c_6(__^#(X1, active(X2)))}
      
      The usable rules for this path are the following:
      {  active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z)))
       , active(__(X, nil())) -> mark(X)
       , active(__(nil(), X)) -> mark(X)
       , active(and(tt(), X)) -> mark(X)
       , active(isNePal(__(I, __(P, I)))) -> mark(tt())
       , active(__(X1, X2)) -> __(active(X1), X2)
       , active(__(X1, X2)) -> __(X1, active(X2))
       , active(and(X1, X2)) -> and(active(X1), X2)
       , active(isNePal(X)) -> isNePal(active(X))
       , __(mark(X1), X2) -> mark(__(X1, X2))
       , __(X1, mark(X2)) -> mark(__(X1, X2))
       , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
       , and(mark(X1), X2) -> mark(and(X1, X2))
       , isNePal(mark(X)) -> mark(isNePal(X))
       , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
       , isNePal(ok(X)) -> ok(isNePal(X))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z)))
               , active(__(X, nil())) -> mark(X)
               , active(__(nil(), X)) -> mark(X)
               , active(and(tt(), X)) -> mark(X)
               , active(isNePal(__(I, __(P, I)))) -> mark(tt())
               , active(__(X1, X2)) -> __(active(X1), X2)
               , active(__(X1, X2)) -> __(X1, active(X2))
               , active(and(X1, X2)) -> and(active(X1), X2)
               , active(isNePal(X)) -> isNePal(active(X))
               , __(mark(X1), X2) -> mark(__(X1, X2))
               , __(X1, mark(X2)) -> mark(__(X1, X2))
               , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
               , and(mark(X1), X2) -> mark(and(X1, X2))
               , isNePal(mark(X)) -> mark(isNePal(X))
               , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
               , isNePal(ok(X)) -> ok(isNePal(X))
               , active^#(__(X1, X2)) -> c_6(__^#(X1, active(X2)))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {active^#(__(X1, X2)) -> c_6(__^#(X1, active(X2)))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active^#(__(X1, X2)) -> c_6(__^#(X1, active(X2)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [1]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isNePal(x1) = [1] x1 + [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [9]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [1] x1 + [1] x2 + [7]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4() = [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [1] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_8(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14() = [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16() = [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
            and weakly orienting the rules
            {active^#(__(X1, X2)) -> c_6(__^#(X1, active(X2)))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  __(ok(X1), ok(X2)) -> ok(__(X1, X2))
               , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [1]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isNePal(x1) = [1] x1 + [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [8]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4() = [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [1] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_8(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14() = [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16() = [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {active(isNePal(__(I, __(P, I)))) -> mark(tt())}
            and weakly orienting the rules
            {  __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
             , active^#(__(X1, X2)) -> c_6(__^#(X1, active(X2)))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active(isNePal(__(I, __(P, I)))) -> mark(tt())}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [1]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isNePal(x1) = [1] x1 + [12]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [5]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4() = [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [1] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_8(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14() = [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16() = [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {active(and(tt(), X)) -> mark(X)}
            and weakly orienting the rules
            {  active(isNePal(__(I, __(P, I)))) -> mark(tt())
             , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
             , active^#(__(X1, X2)) -> c_6(__^#(X1, active(X2)))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active(and(tt(), X)) -> mark(X)}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [1]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [8]
                  tt() = [0]
                  isNePal(x1) = [1] x1 + [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [5]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4() = [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [1] x1 + [2]
                  c_7(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_8(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14() = [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16() = [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  active(__(X, nil())) -> mark(X)
             , active(__(nil(), X)) -> mark(X)}
            and weakly orienting the rules
            {  active(and(tt(), X)) -> mark(X)
             , active(isNePal(__(I, __(P, I)))) -> mark(tt())
             , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
             , active^#(__(X1, X2)) -> c_6(__^#(X1, active(X2)))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  active(__(X, nil())) -> mark(X)
               , active(__(nil(), X)) -> mark(X)}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [1]
                  nil() = [15]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isNePal(x1) = [1] x1 + [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [8]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4() = [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [1] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_8(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14() = [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16() = [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z)))}
            and weakly orienting the rules
            {  active(__(X, nil())) -> mark(X)
             , active(__(nil(), X)) -> mark(X)
             , active(and(tt(), X)) -> mark(X)
             , active(isNePal(__(I, __(P, I)))) -> mark(tt())
             , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
             , active^#(__(X1, X2)) -> c_6(__^#(X1, active(X2)))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [8]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [0]
                  nil() = [4]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isNePal(x1) = [1] x1 + [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [8]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [12]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [1] x1 + [1] x2 + [1]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4() = [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [1] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_8(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14() = [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16() = [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  active(__(X1, X2)) -> __(active(X1), X2)
                 , active(__(X1, X2)) -> __(X1, active(X2))
                 , active(and(X1, X2)) -> and(active(X1), X2)
                 , active(isNePal(X)) -> isNePal(active(X))
                 , __(mark(X1), X2) -> mark(__(X1, X2))
                 , __(X1, mark(X2)) -> mark(__(X1, X2))
                 , and(mark(X1), X2) -> mark(and(X1, X2))
                 , isNePal(mark(X)) -> mark(isNePal(X))
                 , isNePal(ok(X)) -> ok(isNePal(X))}
              Weak Rules:
                {  active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z)))
                 , active(__(X, nil())) -> mark(X)
                 , active(__(nil(), X)) -> mark(X)
                 , active(and(tt(), X)) -> mark(X)
                 , active(isNePal(__(I, __(P, I)))) -> mark(tt())
                 , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
                 , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
                 , active^#(__(X1, X2)) -> c_6(__^#(X1, active(X2)))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  active(__(X1, X2)) -> __(active(X1), X2)
                   , active(__(X1, X2)) -> __(X1, active(X2))
                   , active(and(X1, X2)) -> and(active(X1), X2)
                   , active(isNePal(X)) -> isNePal(active(X))
                   , __(mark(X1), X2) -> mark(__(X1, X2))
                   , __(X1, mark(X2)) -> mark(__(X1, X2))
                   , and(mark(X1), X2) -> mark(and(X1, X2))
                   , isNePal(mark(X)) -> mark(isNePal(X))
                   , isNePal(ok(X)) -> ok(isNePal(X))}
                Weak Rules:
                  {  active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z)))
                   , active(__(X, nil())) -> mark(X)
                   , active(__(nil(), X)) -> mark(X)
                   , active(and(tt(), X)) -> mark(X)
                   , active(isNePal(__(I, __(P, I)))) -> mark(tt())
                   , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
                   , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
                   , active^#(__(X1, X2)) -> c_6(__^#(X1, active(X2)))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  mark_0(3) -> 3
                 , mark_0(4) -> 3
                 , mark_0(6) -> 3
                 , mark_0(9) -> 3
                 , nil_0() -> 4
                 , tt_0() -> 6
                 , ok_0(3) -> 9
                 , ok_0(4) -> 9
                 , ok_0(6) -> 9
                 , ok_0(9) -> 9
                 , active^#_0(3) -> 11
                 , active^#_0(4) -> 11
                 , active^#_0(6) -> 11
                 , active^#_0(9) -> 11
                 , __^#_0(3, 3) -> 13
                 , __^#_0(3, 4) -> 13
                 , __^#_0(3, 6) -> 13
                 , __^#_0(3, 9) -> 13
                 , __^#_0(4, 3) -> 13
                 , __^#_0(4, 4) -> 13
                 , __^#_0(4, 6) -> 13
                 , __^#_0(4, 9) -> 13
                 , __^#_0(6, 3) -> 13
                 , __^#_0(6, 4) -> 13
                 , __^#_0(6, 6) -> 13
                 , __^#_0(6, 9) -> 13
                 , __^#_0(9, 3) -> 13
                 , __^#_0(9, 4) -> 13
                 , __^#_0(9, 6) -> 13
                 , __^#_0(9, 9) -> 13}
      
   7) {active^#(__(X1, X2)) -> c_5(__^#(active(X1), X2))}
      
      The usable rules for this path are the following:
      {  active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z)))
       , active(__(X, nil())) -> mark(X)
       , active(__(nil(), X)) -> mark(X)
       , active(and(tt(), X)) -> mark(X)
       , active(isNePal(__(I, __(P, I)))) -> mark(tt())
       , active(__(X1, X2)) -> __(active(X1), X2)
       , active(__(X1, X2)) -> __(X1, active(X2))
       , active(and(X1, X2)) -> and(active(X1), X2)
       , active(isNePal(X)) -> isNePal(active(X))
       , __(mark(X1), X2) -> mark(__(X1, X2))
       , __(X1, mark(X2)) -> mark(__(X1, X2))
       , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
       , and(mark(X1), X2) -> mark(and(X1, X2))
       , isNePal(mark(X)) -> mark(isNePal(X))
       , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
       , isNePal(ok(X)) -> ok(isNePal(X))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z)))
               , active(__(X, nil())) -> mark(X)
               , active(__(nil(), X)) -> mark(X)
               , active(and(tt(), X)) -> mark(X)
               , active(isNePal(__(I, __(P, I)))) -> mark(tt())
               , active(__(X1, X2)) -> __(active(X1), X2)
               , active(__(X1, X2)) -> __(X1, active(X2))
               , active(and(X1, X2)) -> and(active(X1), X2)
               , active(isNePal(X)) -> isNePal(active(X))
               , __(mark(X1), X2) -> mark(__(X1, X2))
               , __(X1, mark(X2)) -> mark(__(X1, X2))
               , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
               , and(mark(X1), X2) -> mark(and(X1, X2))
               , isNePal(mark(X)) -> mark(isNePal(X))
               , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
               , isNePal(ok(X)) -> ok(isNePal(X))
               , active^#(__(X1, X2)) -> c_5(__^#(active(X1), X2))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {active^#(__(X1, X2)) -> c_5(__^#(active(X1), X2))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active^#(__(X1, X2)) -> c_5(__^#(active(X1), X2))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [1]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isNePal(x1) = [1] x1 + [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [9]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [1] x1 + [1] x2 + [7]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4() = [0]
                  c_5(x1) = [1] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_8(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14() = [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16() = [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
            and weakly orienting the rules
            {active^#(__(X1, X2)) -> c_5(__^#(active(X1), X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  __(ok(X1), ok(X2)) -> ok(__(X1, X2))
               , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [1]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isNePal(x1) = [1] x1 + [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [8]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4() = [0]
                  c_5(x1) = [1] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_8(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14() = [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16() = [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {active(isNePal(__(I, __(P, I)))) -> mark(tt())}
            and weakly orienting the rules
            {  __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
             , active^#(__(X1, X2)) -> c_5(__^#(active(X1), X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active(isNePal(__(I, __(P, I)))) -> mark(tt())}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [1]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isNePal(x1) = [1] x1 + [12]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [5]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4() = [0]
                  c_5(x1) = [1] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_8(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14() = [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16() = [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {active(and(tt(), X)) -> mark(X)}
            and weakly orienting the rules
            {  active(isNePal(__(I, __(P, I)))) -> mark(tt())
             , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
             , active^#(__(X1, X2)) -> c_5(__^#(active(X1), X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active(and(tt(), X)) -> mark(X)}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [1]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [8]
                  tt() = [0]
                  isNePal(x1) = [1] x1 + [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [5]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4() = [0]
                  c_5(x1) = [1] x1 + [2]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_8(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14() = [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16() = [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  active(__(X, nil())) -> mark(X)
             , active(__(nil(), X)) -> mark(X)}
            and weakly orienting the rules
            {  active(and(tt(), X)) -> mark(X)
             , active(isNePal(__(I, __(P, I)))) -> mark(tt())
             , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
             , active^#(__(X1, X2)) -> c_5(__^#(active(X1), X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  active(__(X, nil())) -> mark(X)
               , active(__(nil(), X)) -> mark(X)}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [1]
                  nil() = [15]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isNePal(x1) = [1] x1 + [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [8]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4() = [0]
                  c_5(x1) = [1] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_8(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14() = [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16() = [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z)))}
            and weakly orienting the rules
            {  active(__(X, nil())) -> mark(X)
             , active(__(nil(), X)) -> mark(X)
             , active(and(tt(), X)) -> mark(X)
             , active(isNePal(__(I, __(P, I)))) -> mark(tt())
             , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
             , active^#(__(X1, X2)) -> c_5(__^#(active(X1), X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [8]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [0]
                  nil() = [4]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isNePal(x1) = [1] x1 + [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [8]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [12]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [1] x1 + [1] x2 + [1]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4() = [0]
                  c_5(x1) = [1] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_8(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14() = [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16() = [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  active(__(X1, X2)) -> __(active(X1), X2)
                 , active(__(X1, X2)) -> __(X1, active(X2))
                 , active(and(X1, X2)) -> and(active(X1), X2)
                 , active(isNePal(X)) -> isNePal(active(X))
                 , __(mark(X1), X2) -> mark(__(X1, X2))
                 , __(X1, mark(X2)) -> mark(__(X1, X2))
                 , and(mark(X1), X2) -> mark(and(X1, X2))
                 , isNePal(mark(X)) -> mark(isNePal(X))
                 , isNePal(ok(X)) -> ok(isNePal(X))}
              Weak Rules:
                {  active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z)))
                 , active(__(X, nil())) -> mark(X)
                 , active(__(nil(), X)) -> mark(X)
                 , active(and(tt(), X)) -> mark(X)
                 , active(isNePal(__(I, __(P, I)))) -> mark(tt())
                 , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
                 , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
                 , active^#(__(X1, X2)) -> c_5(__^#(active(X1), X2))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  active(__(X1, X2)) -> __(active(X1), X2)
                   , active(__(X1, X2)) -> __(X1, active(X2))
                   , active(and(X1, X2)) -> and(active(X1), X2)
                   , active(isNePal(X)) -> isNePal(active(X))
                   , __(mark(X1), X2) -> mark(__(X1, X2))
                   , __(X1, mark(X2)) -> mark(__(X1, X2))
                   , and(mark(X1), X2) -> mark(and(X1, X2))
                   , isNePal(mark(X)) -> mark(isNePal(X))
                   , isNePal(ok(X)) -> ok(isNePal(X))}
                Weak Rules:
                  {  active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z)))
                   , active(__(X, nil())) -> mark(X)
                   , active(__(nil(), X)) -> mark(X)
                   , active(and(tt(), X)) -> mark(X)
                   , active(isNePal(__(I, __(P, I)))) -> mark(tt())
                   , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
                   , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
                   , active^#(__(X1, X2)) -> c_5(__^#(active(X1), X2))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  mark_0(3) -> 3
                 , mark_0(4) -> 3
                 , mark_0(6) -> 3
                 , mark_0(9) -> 3
                 , nil_0() -> 4
                 , tt_0() -> 6
                 , ok_0(3) -> 9
                 , ok_0(4) -> 9
                 , ok_0(6) -> 9
                 , ok_0(9) -> 9
                 , active^#_0(3) -> 11
                 , active^#_0(4) -> 11
                 , active^#_0(6) -> 11
                 , active^#_0(9) -> 11
                 , __^#_0(3, 3) -> 13
                 , __^#_0(3, 4) -> 13
                 , __^#_0(3, 6) -> 13
                 , __^#_0(3, 9) -> 13
                 , __^#_0(4, 3) -> 13
                 , __^#_0(4, 4) -> 13
                 , __^#_0(4, 6) -> 13
                 , __^#_0(4, 9) -> 13
                 , __^#_0(6, 3) -> 13
                 , __^#_0(6, 4) -> 13
                 , __^#_0(6, 6) -> 13
                 , __^#_0(6, 9) -> 13
                 , __^#_0(9, 3) -> 13
                 , __^#_0(9, 4) -> 13
                 , __^#_0(9, 6) -> 13
                 , __^#_0(9, 9) -> 13}
      
   8) {  proper^#(__(X1, X2)) -> c_13(__^#(proper(X1), proper(X2)))
       , __^#(ok(X1), ok(X2)) -> c_18(__^#(X1, X2))
       , __^#(X1, mark(X2)) -> c_10(__^#(X1, X2))
       , __^#(mark(X1), X2) -> c_9(__^#(X1, X2))}
      
      The usable rules for this path are the following:
      {  proper(__(X1, X2)) -> __(proper(X1), proper(X2))
       , proper(nil()) -> ok(nil())
       , proper(and(X1, X2)) -> and(proper(X1), proper(X2))
       , proper(tt()) -> ok(tt())
       , proper(isNePal(X)) -> isNePal(proper(X))
       , __(mark(X1), X2) -> mark(__(X1, X2))
       , __(X1, mark(X2)) -> mark(__(X1, X2))
       , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
       , and(mark(X1), X2) -> mark(and(X1, X2))
       , isNePal(mark(X)) -> mark(isNePal(X))
       , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
       , isNePal(ok(X)) -> ok(isNePal(X))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  proper(__(X1, X2)) -> __(proper(X1), proper(X2))
               , proper(nil()) -> ok(nil())
               , proper(and(X1, X2)) -> and(proper(X1), proper(X2))
               , proper(tt()) -> ok(tt())
               , proper(isNePal(X)) -> isNePal(proper(X))
               , __(mark(X1), X2) -> mark(__(X1, X2))
               , __(X1, mark(X2)) -> mark(__(X1, X2))
               , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
               , and(mark(X1), X2) -> mark(and(X1, X2))
               , isNePal(mark(X)) -> mark(isNePal(X))
               , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
               , isNePal(ok(X)) -> ok(isNePal(X))
               , proper^#(__(X1, X2)) -> c_13(__^#(proper(X1), proper(X2)))
               , __^#(ok(X1), ok(X2)) -> c_18(__^#(X1, X2))
               , __^#(X1, mark(X2)) -> c_10(__^#(X1, X2))
               , __^#(mark(X1), X2) -> c_9(__^#(X1, X2))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
             , __^#(ok(X1), ok(X2)) -> c_18(__^#(X1, X2))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  __(ok(X1), ok(X2)) -> ok(__(X1, X2))
               , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
               , __^#(ok(X1), ok(X2)) -> c_18(__^#(X1, X2))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [0]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isNePal(x1) = [1] x1 + [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [1]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4() = [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_8(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_9(x1) = [1] x1 + [1]
                  c_10(x1) = [1] x1 + [1]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [1]
                  c_13(x1) = [1] x1 + [1]
                  c_14() = [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16() = [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [1] x1 + [1]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {proper^#(__(X1, X2)) -> c_13(__^#(proper(X1), proper(X2)))}
            and weakly orienting the rules
            {  __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
             , __^#(ok(X1), ok(X2)) -> c_18(__^#(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {proper^#(__(X1, X2)) -> c_13(__^#(proper(X1), proper(X2)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [0]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isNePal(x1) = [1] x1 + [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [1]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4() = [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_8(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_9(x1) = [1] x1 + [1]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [9]
                  c_13(x1) = [1] x1 + [1]
                  c_14() = [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16() = [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [1] x1 + [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {__^#(mark(X1), X2) -> c_9(__^#(X1, X2))}
            and weakly orienting the rules
            {  proper^#(__(X1, X2)) -> c_13(__^#(proper(X1), proper(X2)))
             , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
             , __^#(ok(X1), ok(X2)) -> c_18(__^#(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {__^#(mark(X1), X2) -> c_9(__^#(X1, X2))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [8]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isNePal(x1) = [1] x1 + [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [1]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4() = [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_8(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_9(x1) = [1] x1 + [4]
                  c_10(x1) = [1] x1 + [8]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [9]
                  c_13(x1) = [1] x1 + [2]
                  c_14() = [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16() = [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [1] x1 + [1]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {__^#(X1, mark(X2)) -> c_10(__^#(X1, X2))}
            and weakly orienting the rules
            {  __^#(mark(X1), X2) -> c_9(__^#(X1, X2))
             , proper^#(__(X1, X2)) -> c_13(__^#(proper(X1), proper(X2)))
             , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
             , __^#(ok(X1), ok(X2)) -> c_18(__^#(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {__^#(X1, mark(X2)) -> c_10(__^#(X1, X2))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [8]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isNePal(x1) = [1] x1 + [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [1]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [1] x1 + [1] x2 + [13]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4() = [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_8(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_9(x1) = [1] x1 + [0]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [15]
                  c_13(x1) = [1] x1 + [0]
                  c_14() = [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16() = [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [1] x1 + [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  proper(nil()) -> ok(nil())
             , proper(tt()) -> ok(tt())}
            and weakly orienting the rules
            {  __^#(X1, mark(X2)) -> c_10(__^#(X1, X2))
             , __^#(mark(X1), X2) -> c_9(__^#(X1, X2))
             , proper^#(__(X1, X2)) -> c_13(__^#(proper(X1), proper(X2)))
             , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
             , __^#(ok(X1), ok(X2)) -> c_18(__^#(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  proper(nil()) -> ok(nil())
               , proper(tt()) -> ok(tt())}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [0]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isNePal(x1) = [1] x1 + [0]
                  proper(x1) = [1] x1 + [4]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4() = [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_8(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_9(x1) = [1] x1 + [0]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [9]
                  c_13(x1) = [1] x1 + [1]
                  c_14() = [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16() = [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [1] x1 + [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  proper(__(X1, X2)) -> __(proper(X1), proper(X2))
                 , proper(and(X1, X2)) -> and(proper(X1), proper(X2))
                 , proper(isNePal(X)) -> isNePal(proper(X))
                 , __(mark(X1), X2) -> mark(__(X1, X2))
                 , __(X1, mark(X2)) -> mark(__(X1, X2))
                 , and(mark(X1), X2) -> mark(and(X1, X2))
                 , isNePal(mark(X)) -> mark(isNePal(X))
                 , isNePal(ok(X)) -> ok(isNePal(X))}
              Weak Rules:
                {  proper(nil()) -> ok(nil())
                 , proper(tt()) -> ok(tt())
                 , __^#(X1, mark(X2)) -> c_10(__^#(X1, X2))
                 , __^#(mark(X1), X2) -> c_9(__^#(X1, X2))
                 , proper^#(__(X1, X2)) -> c_13(__^#(proper(X1), proper(X2)))
                 , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
                 , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
                 , __^#(ok(X1), ok(X2)) -> c_18(__^#(X1, X2))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  proper(__(X1, X2)) -> __(proper(X1), proper(X2))
                   , proper(and(X1, X2)) -> and(proper(X1), proper(X2))
                   , proper(isNePal(X)) -> isNePal(proper(X))
                   , __(mark(X1), X2) -> mark(__(X1, X2))
                   , __(X1, mark(X2)) -> mark(__(X1, X2))
                   , and(mark(X1), X2) -> mark(and(X1, X2))
                   , isNePal(mark(X)) -> mark(isNePal(X))
                   , isNePal(ok(X)) -> ok(isNePal(X))}
                Weak Rules:
                  {  proper(nil()) -> ok(nil())
                   , proper(tt()) -> ok(tt())
                   , __^#(X1, mark(X2)) -> c_10(__^#(X1, X2))
                   , __^#(mark(X1), X2) -> c_9(__^#(X1, X2))
                   , proper^#(__(X1, X2)) -> c_13(__^#(proper(X1), proper(X2)))
                   , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
                   , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
                   , __^#(ok(X1), ok(X2)) -> c_18(__^#(X1, X2))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  mark_0(2) -> 2
                 , nil_0() -> 2
                 , tt_0() -> 2
                 , ok_0(2) -> 2
                 , __^#_0(2, 2) -> 1
                 , c_9_0(1) -> 1
                 , c_10_0(1) -> 1
                 , proper^#_0(2) -> 1
                 , c_18_0(1) -> 1}
      
   9) {active^#(and(X1, X2)) -> c_7(and^#(active(X1), X2))}
      
      The usable rules for this path are the following:
      {  active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z)))
       , active(__(X, nil())) -> mark(X)
       , active(__(nil(), X)) -> mark(X)
       , active(and(tt(), X)) -> mark(X)
       , active(isNePal(__(I, __(P, I)))) -> mark(tt())
       , active(__(X1, X2)) -> __(active(X1), X2)
       , active(__(X1, X2)) -> __(X1, active(X2))
       , active(and(X1, X2)) -> and(active(X1), X2)
       , active(isNePal(X)) -> isNePal(active(X))
       , __(mark(X1), X2) -> mark(__(X1, X2))
       , __(X1, mark(X2)) -> mark(__(X1, X2))
       , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
       , and(mark(X1), X2) -> mark(and(X1, X2))
       , isNePal(mark(X)) -> mark(isNePal(X))
       , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
       , isNePal(ok(X)) -> ok(isNePal(X))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z)))
               , active(__(X, nil())) -> mark(X)
               , active(__(nil(), X)) -> mark(X)
               , active(and(tt(), X)) -> mark(X)
               , active(isNePal(__(I, __(P, I)))) -> mark(tt())
               , active(__(X1, X2)) -> __(active(X1), X2)
               , active(__(X1, X2)) -> __(X1, active(X2))
               , active(and(X1, X2)) -> and(active(X1), X2)
               , active(isNePal(X)) -> isNePal(active(X))
               , __(mark(X1), X2) -> mark(__(X1, X2))
               , __(X1, mark(X2)) -> mark(__(X1, X2))
               , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
               , and(mark(X1), X2) -> mark(and(X1, X2))
               , isNePal(mark(X)) -> mark(isNePal(X))
               , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
               , isNePal(ok(X)) -> ok(isNePal(X))
               , active^#(and(X1, X2)) -> c_7(and^#(active(X1), X2))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  __(ok(X1), ok(X2)) -> ok(__(X1, X2))
               , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [1]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isNePal(x1) = [1] x1 + [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [1]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4() = [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [1] x1 + [1]
                  and^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_8(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14() = [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16() = [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {active^#(and(X1, X2)) -> c_7(and^#(active(X1), X2))}
            and weakly orienting the rules
            {  __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active^#(and(X1, X2)) -> c_7(and^#(active(X1), X2))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [1]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isNePal(x1) = [1] x1 + [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [9]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4() = [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [1] x1 + [0]
                  and^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_8(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14() = [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16() = [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  active(__(X, nil())) -> mark(X)
             , active(__(nil(), X)) -> mark(X)
             , active(isNePal(__(I, __(P, I)))) -> mark(tt())}
            and weakly orienting the rules
            {  active^#(and(X1, X2)) -> c_7(and^#(active(X1), X2))
             , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  active(__(X, nil())) -> mark(X)
               , active(__(nil(), X)) -> mark(X)
               , active(isNePal(__(I, __(P, I)))) -> mark(tt())}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [1]
                  nil() = [4]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isNePal(x1) = [1] x1 + [12]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [4]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4() = [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [1] x1 + [0]
                  and^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_8(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14() = [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16() = [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {active(and(tt(), X)) -> mark(X)}
            and weakly orienting the rules
            {  active(__(X, nil())) -> mark(X)
             , active(__(nil(), X)) -> mark(X)
             , active(isNePal(__(I, __(P, I)))) -> mark(tt())
             , active^#(and(X1, X2)) -> c_7(and^#(active(X1), X2))
             , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active(and(tt(), X)) -> mark(X)}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [1]
                  nil() = [15]
                  and(x1, x2) = [1] x1 + [1] x2 + [8]
                  tt() = [0]
                  isNePal(x1) = [1] x1 + [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [9]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4() = [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [1] x1 + [15]
                  and^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_8(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14() = [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16() = [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z)))}
            and weakly orienting the rules
            {  active(and(tt(), X)) -> mark(X)
             , active(__(X, nil())) -> mark(X)
             , active(__(nil(), X)) -> mark(X)
             , active(isNePal(__(I, __(P, I)))) -> mark(tt())
             , active^#(and(X1, X2)) -> c_7(and^#(active(X1), X2))
             , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [0]
                  nil() = [15]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isNePal(x1) = [1] x1 + [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [5]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4() = [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [1] x1 + [0]
                  and^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_8(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14() = [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16() = [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  active(__(X1, X2)) -> __(active(X1), X2)
                 , active(__(X1, X2)) -> __(X1, active(X2))
                 , active(and(X1, X2)) -> and(active(X1), X2)
                 , active(isNePal(X)) -> isNePal(active(X))
                 , __(mark(X1), X2) -> mark(__(X1, X2))
                 , __(X1, mark(X2)) -> mark(__(X1, X2))
                 , and(mark(X1), X2) -> mark(and(X1, X2))
                 , isNePal(mark(X)) -> mark(isNePal(X))
                 , isNePal(ok(X)) -> ok(isNePal(X))}
              Weak Rules:
                {  active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z)))
                 , active(and(tt(), X)) -> mark(X)
                 , active(__(X, nil())) -> mark(X)
                 , active(__(nil(), X)) -> mark(X)
                 , active(isNePal(__(I, __(P, I)))) -> mark(tt())
                 , active^#(and(X1, X2)) -> c_7(and^#(active(X1), X2))
                 , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
                 , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  active(__(X1, X2)) -> __(active(X1), X2)
                   , active(__(X1, X2)) -> __(X1, active(X2))
                   , active(and(X1, X2)) -> and(active(X1), X2)
                   , active(isNePal(X)) -> isNePal(active(X))
                   , __(mark(X1), X2) -> mark(__(X1, X2))
                   , __(X1, mark(X2)) -> mark(__(X1, X2))
                   , and(mark(X1), X2) -> mark(and(X1, X2))
                   , isNePal(mark(X)) -> mark(isNePal(X))
                   , isNePal(ok(X)) -> ok(isNePal(X))}
                Weak Rules:
                  {  active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z)))
                   , active(and(tt(), X)) -> mark(X)
                   , active(__(X, nil())) -> mark(X)
                   , active(__(nil(), X)) -> mark(X)
                   , active(isNePal(__(I, __(P, I)))) -> mark(tt())
                   , active^#(and(X1, X2)) -> c_7(and^#(active(X1), X2))
                   , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
                   , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  mark_0(3) -> 3
                 , mark_0(4) -> 3
                 , mark_0(6) -> 3
                 , mark_0(9) -> 3
                 , nil_0() -> 4
                 , tt_0() -> 6
                 , ok_0(3) -> 9
                 , ok_0(4) -> 9
                 , ok_0(6) -> 9
                 , ok_0(9) -> 9
                 , active^#_0(3) -> 11
                 , active^#_0(4) -> 11
                 , active^#_0(6) -> 11
                 , active^#_0(9) -> 11
                 , and^#_0(3, 3) -> 21
                 , and^#_0(3, 4) -> 21
                 , and^#_0(3, 6) -> 21
                 , and^#_0(3, 9) -> 21
                 , and^#_0(4, 3) -> 21
                 , and^#_0(4, 4) -> 21
                 , and^#_0(4, 6) -> 21
                 , and^#_0(4, 9) -> 21
                 , and^#_0(6, 3) -> 21
                 , and^#_0(6, 4) -> 21
                 , and^#_0(6, 6) -> 21
                 , and^#_0(6, 9) -> 21
                 , and^#_0(9, 3) -> 21
                 , and^#_0(9, 4) -> 21
                 , and^#_0(9, 6) -> 21
                 , and^#_0(9, 9) -> 21}
      
   10)
      {active^#(isNePal(X)) -> c_8(isNePal^#(active(X)))}
      
      The usable rules for this path are the following:
      {  active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z)))
       , active(__(X, nil())) -> mark(X)
       , active(__(nil(), X)) -> mark(X)
       , active(and(tt(), X)) -> mark(X)
       , active(isNePal(__(I, __(P, I)))) -> mark(tt())
       , active(__(X1, X2)) -> __(active(X1), X2)
       , active(__(X1, X2)) -> __(X1, active(X2))
       , active(and(X1, X2)) -> and(active(X1), X2)
       , active(isNePal(X)) -> isNePal(active(X))
       , __(mark(X1), X2) -> mark(__(X1, X2))
       , __(X1, mark(X2)) -> mark(__(X1, X2))
       , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
       , and(mark(X1), X2) -> mark(and(X1, X2))
       , isNePal(mark(X)) -> mark(isNePal(X))
       , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
       , isNePal(ok(X)) -> ok(isNePal(X))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z)))
               , active(__(X, nil())) -> mark(X)
               , active(__(nil(), X)) -> mark(X)
               , active(and(tt(), X)) -> mark(X)
               , active(isNePal(__(I, __(P, I)))) -> mark(tt())
               , active(__(X1, X2)) -> __(active(X1), X2)
               , active(__(X1, X2)) -> __(X1, active(X2))
               , active(and(X1, X2)) -> and(active(X1), X2)
               , active(isNePal(X)) -> isNePal(active(X))
               , __(mark(X1), X2) -> mark(__(X1, X2))
               , __(X1, mark(X2)) -> mark(__(X1, X2))
               , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
               , and(mark(X1), X2) -> mark(and(X1, X2))
               , isNePal(mark(X)) -> mark(isNePal(X))
               , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
               , isNePal(ok(X)) -> ok(isNePal(X))
               , active^#(isNePal(X)) -> c_8(isNePal^#(active(X)))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {active(and(tt(), X)) -> mark(X)}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active(and(tt(), X)) -> mark(X)}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [1]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [8]
                  isNePal(x1) = [1] x1 + [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4() = [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_8(x1) = [1] x1 + [0]
                  isNePal^#(x1) = [1] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14() = [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16() = [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
            and weakly orienting the rules
            {active(and(tt(), X)) -> mark(X)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  __(ok(X1), ok(X2)) -> ok(__(X1, X2))
               , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [1]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [4]
                  tt() = [0]
                  isNePal(x1) = [1] x1 + [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [4]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4() = [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_8(x1) = [1] x1 + [0]
                  isNePal^#(x1) = [1] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14() = [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16() = [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  active(isNePal(__(I, __(P, I)))) -> mark(tt())
             , active^#(isNePal(X)) -> c_8(isNePal^#(active(X)))}
            and weakly orienting the rules
            {  __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
             , active(and(tt(), X)) -> mark(X)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  active(isNePal(__(I, __(P, I)))) -> mark(tt())
               , active^#(isNePal(X)) -> c_8(isNePal^#(active(X)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [1]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [2]
                  isNePal(x1) = [1] x1 + [6]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [10]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [5]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4() = [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_8(x1) = [1] x1 + [7]
                  isNePal^#(x1) = [1] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14() = [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16() = [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  active(__(X, nil())) -> mark(X)
             , active(__(nil(), X)) -> mark(X)}
            and weakly orienting the rules
            {  active(isNePal(__(I, __(P, I)))) -> mark(tt())
             , active^#(isNePal(X)) -> c_8(isNePal^#(active(X)))
             , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
             , active(and(tt(), X)) -> mark(X)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  active(__(X, nil())) -> mark(X)
               , active(__(nil(), X)) -> mark(X)}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [1]
                  nil() = [15]
                  and(x1, x2) = [1] x1 + [1] x2 + [1]
                  tt() = [0]
                  isNePal(x1) = [1] x1 + [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [9]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4() = [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_8(x1) = [1] x1 + [0]
                  isNePal^#(x1) = [1] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14() = [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16() = [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z)))}
            and weakly orienting the rules
            {  active(__(X, nil())) -> mark(X)
             , active(__(nil(), X)) -> mark(X)
             , active(isNePal(__(I, __(P, I)))) -> mark(tt())
             , active^#(isNePal(X)) -> c_8(isNePal^#(active(X)))
             , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
             , active(and(tt(), X)) -> mark(X)}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [1] x1 + [1]
                  __(x1, x2) = [1] x1 + [1] x2 + [11]
                  mark(x1) = [1] x1 + [0]
                  nil() = [5]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isNePal(x1) = [1] x1 + [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [3]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4() = [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_8(x1) = [1] x1 + [0]
                  isNePal^#(x1) = [1] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14() = [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16() = [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  active(__(X1, X2)) -> __(active(X1), X2)
                 , active(__(X1, X2)) -> __(X1, active(X2))
                 , active(and(X1, X2)) -> and(active(X1), X2)
                 , active(isNePal(X)) -> isNePal(active(X))
                 , __(mark(X1), X2) -> mark(__(X1, X2))
                 , __(X1, mark(X2)) -> mark(__(X1, X2))
                 , and(mark(X1), X2) -> mark(and(X1, X2))
                 , isNePal(mark(X)) -> mark(isNePal(X))
                 , isNePal(ok(X)) -> ok(isNePal(X))}
              Weak Rules:
                {  active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z)))
                 , active(__(X, nil())) -> mark(X)
                 , active(__(nil(), X)) -> mark(X)
                 , active(isNePal(__(I, __(P, I)))) -> mark(tt())
                 , active^#(isNePal(X)) -> c_8(isNePal^#(active(X)))
                 , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
                 , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
                 , active(and(tt(), X)) -> mark(X)}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  active(__(X1, X2)) -> __(active(X1), X2)
                   , active(__(X1, X2)) -> __(X1, active(X2))
                   , active(and(X1, X2)) -> and(active(X1), X2)
                   , active(isNePal(X)) -> isNePal(active(X))
                   , __(mark(X1), X2) -> mark(__(X1, X2))
                   , __(X1, mark(X2)) -> mark(__(X1, X2))
                   , and(mark(X1), X2) -> mark(and(X1, X2))
                   , isNePal(mark(X)) -> mark(isNePal(X))
                   , isNePal(ok(X)) -> ok(isNePal(X))}
                Weak Rules:
                  {  active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z)))
                   , active(__(X, nil())) -> mark(X)
                   , active(__(nil(), X)) -> mark(X)
                   , active(isNePal(__(I, __(P, I)))) -> mark(tt())
                   , active^#(isNePal(X)) -> c_8(isNePal^#(active(X)))
                   , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
                   , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
                   , active(and(tt(), X)) -> mark(X)}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  mark_0(3) -> 3
                 , mark_0(4) -> 3
                 , mark_0(6) -> 3
                 , mark_0(9) -> 3
                 , nil_0() -> 4
                 , tt_0() -> 6
                 , ok_0(3) -> 9
                 , ok_0(4) -> 9
                 , ok_0(6) -> 9
                 , ok_0(9) -> 9
                 , active^#_0(3) -> 11
                 , active^#_0(4) -> 11
                 , active^#_0(6) -> 11
                 , active^#_0(9) -> 11
                 , isNePal^#_0(3) -> 23
                 , isNePal^#_0(4) -> 23
                 , isNePal^#_0(6) -> 23
                 , isNePal^#_0(9) -> 23}
      
   11)
      {  proper^#(isNePal(X)) -> c_17(isNePal^#(proper(X)))
       , isNePal^#(ok(X)) -> c_20(isNePal^#(X))
       , isNePal^#(mark(X)) -> c_12(isNePal^#(X))}
      
      The usable rules for this path are the following:
      {  proper(__(X1, X2)) -> __(proper(X1), proper(X2))
       , proper(nil()) -> ok(nil())
       , proper(and(X1, X2)) -> and(proper(X1), proper(X2))
       , proper(tt()) -> ok(tt())
       , proper(isNePal(X)) -> isNePal(proper(X))
       , __(mark(X1), X2) -> mark(__(X1, X2))
       , __(X1, mark(X2)) -> mark(__(X1, X2))
       , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
       , and(mark(X1), X2) -> mark(and(X1, X2))
       , isNePal(mark(X)) -> mark(isNePal(X))
       , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
       , isNePal(ok(X)) -> ok(isNePal(X))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  proper(__(X1, X2)) -> __(proper(X1), proper(X2))
               , proper(nil()) -> ok(nil())
               , proper(and(X1, X2)) -> and(proper(X1), proper(X2))
               , proper(tt()) -> ok(tt())
               , proper(isNePal(X)) -> isNePal(proper(X))
               , __(mark(X1), X2) -> mark(__(X1, X2))
               , __(X1, mark(X2)) -> mark(__(X1, X2))
               , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
               , and(mark(X1), X2) -> mark(and(X1, X2))
               , isNePal(mark(X)) -> mark(isNePal(X))
               , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
               , isNePal(ok(X)) -> ok(isNePal(X))
               , proper^#(isNePal(X)) -> c_17(isNePal^#(proper(X)))
               , isNePal^#(ok(X)) -> c_20(isNePal^#(X))
               , isNePal^#(mark(X)) -> c_12(isNePal^#(X))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  __(ok(X1), ok(X2)) -> ok(__(X1, X2))
               , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [0]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isNePal(x1) = [1] x1 + [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [1]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4() = [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_8(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [1] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [1]
                  proper^#(x1) = [1] x1 + [1]
                  c_13(x1) = [0] x1 + [0]
                  c_14() = [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16() = [0]
                  c_17(x1) = [1] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [1] x1 + [1]
                  top^#(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {isNePal^#(ok(X)) -> c_20(isNePal^#(X))}
            and weakly orienting the rules
            {  __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {isNePal^#(ok(X)) -> c_20(isNePal^#(X))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [0]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isNePal(x1) = [1] x1 + [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [1]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4() = [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_8(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [1] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [1]
                  proper^#(x1) = [1] x1 + [1]
                  c_13(x1) = [0] x1 + [0]
                  c_14() = [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16() = [0]
                  c_17(x1) = [1] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [1] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {proper^#(isNePal(X)) -> c_17(isNePal^#(proper(X)))}
            and weakly orienting the rules
            {  isNePal^#(ok(X)) -> c_20(isNePal^#(X))
             , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {proper^#(isNePal(X)) -> c_17(isNePal^#(proper(X)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [0]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isNePal(x1) = [1] x1 + [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [1]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4() = [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_8(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [1] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [1]
                  proper^#(x1) = [1] x1 + [9]
                  c_13(x1) = [0] x1 + [0]
                  c_14() = [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16() = [0]
                  c_17(x1) = [1] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [1] x1 + [1]
                  top^#(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {isNePal^#(mark(X)) -> c_12(isNePal^#(X))}
            and weakly orienting the rules
            {  proper^#(isNePal(X)) -> c_17(isNePal^#(proper(X)))
             , isNePal^#(ok(X)) -> c_20(isNePal^#(X))
             , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {isNePal^#(mark(X)) -> c_12(isNePal^#(X))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [8]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isNePal(x1) = [1] x1 + [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [1]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4() = [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_8(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [1] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [0]
                  proper^#(x1) = [1] x1 + [9]
                  c_13(x1) = [0] x1 + [0]
                  c_14() = [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16() = [0]
                  c_17(x1) = [1] x1 + [7]
                  c_18(x1) = [0] x1 + [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [1] x1 + [1]
                  top^#(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  proper(nil()) -> ok(nil())
             , proper(tt()) -> ok(tt())}
            and weakly orienting the rules
            {  isNePal^#(mark(X)) -> c_12(isNePal^#(X))
             , proper^#(isNePal(X)) -> c_17(isNePal^#(proper(X)))
             , isNePal^#(ok(X)) -> c_20(isNePal^#(X))
             , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  proper(nil()) -> ok(nil())
               , proper(tt()) -> ok(tt())}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [0]
                  nil() = [15]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isNePal(x1) = [1] x1 + [8]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4() = [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_8(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [1] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [1] x1 + [0]
                  proper^#(x1) = [1] x1 + [9]
                  c_13(x1) = [0] x1 + [0]
                  c_14() = [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16() = [0]
                  c_17(x1) = [1] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [1] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  proper(__(X1, X2)) -> __(proper(X1), proper(X2))
                 , proper(and(X1, X2)) -> and(proper(X1), proper(X2))
                 , proper(isNePal(X)) -> isNePal(proper(X))
                 , __(mark(X1), X2) -> mark(__(X1, X2))
                 , __(X1, mark(X2)) -> mark(__(X1, X2))
                 , and(mark(X1), X2) -> mark(and(X1, X2))
                 , isNePal(mark(X)) -> mark(isNePal(X))
                 , isNePal(ok(X)) -> ok(isNePal(X))}
              Weak Rules:
                {  proper(nil()) -> ok(nil())
                 , proper(tt()) -> ok(tt())
                 , isNePal^#(mark(X)) -> c_12(isNePal^#(X))
                 , proper^#(isNePal(X)) -> c_17(isNePal^#(proper(X)))
                 , isNePal^#(ok(X)) -> c_20(isNePal^#(X))
                 , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
                 , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  proper(__(X1, X2)) -> __(proper(X1), proper(X2))
                   , proper(and(X1, X2)) -> and(proper(X1), proper(X2))
                   , proper(isNePal(X)) -> isNePal(proper(X))
                   , __(mark(X1), X2) -> mark(__(X1, X2))
                   , __(X1, mark(X2)) -> mark(__(X1, X2))
                   , and(mark(X1), X2) -> mark(and(X1, X2))
                   , isNePal(mark(X)) -> mark(isNePal(X))
                   , isNePal(ok(X)) -> ok(isNePal(X))}
                Weak Rules:
                  {  proper(nil()) -> ok(nil())
                   , proper(tt()) -> ok(tt())
                   , isNePal^#(mark(X)) -> c_12(isNePal^#(X))
                   , proper^#(isNePal(X)) -> c_17(isNePal^#(proper(X)))
                   , isNePal^#(ok(X)) -> c_20(isNePal^#(X))
                   , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
                   , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  mark_0(3) -> 3
                 , mark_0(4) -> 3
                 , mark_0(6) -> 3
                 , mark_0(9) -> 3
                 , nil_0() -> 4
                 , tt_0() -> 6
                 , ok_0(3) -> 9
                 , ok_0(4) -> 9
                 , ok_0(6) -> 9
                 , ok_0(9) -> 9
                 , isNePal^#_0(3) -> 23
                 , isNePal^#_0(4) -> 23
                 , isNePal^#_0(6) -> 23
                 , isNePal^#_0(9) -> 23
                 , c_12_0(23) -> 23
                 , proper^#_0(3) -> 28
                 , proper^#_0(4) -> 28
                 , proper^#_0(6) -> 28
                 , proper^#_0(9) -> 28
                 , c_20_0(23) -> 23}
      
   12)
      {  proper^#(and(X1, X2)) -> c_15(and^#(proper(X1), proper(X2)))
       , and^#(ok(X1), ok(X2)) -> c_19(and^#(X1, X2))
       , and^#(mark(X1), X2) -> c_11(and^#(X1, X2))}
      
      The usable rules for this path are the following:
      {  proper(__(X1, X2)) -> __(proper(X1), proper(X2))
       , proper(nil()) -> ok(nil())
       , proper(and(X1, X2)) -> and(proper(X1), proper(X2))
       , proper(tt()) -> ok(tt())
       , proper(isNePal(X)) -> isNePal(proper(X))
       , __(mark(X1), X2) -> mark(__(X1, X2))
       , __(X1, mark(X2)) -> mark(__(X1, X2))
       , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
       , and(mark(X1), X2) -> mark(and(X1, X2))
       , isNePal(mark(X)) -> mark(isNePal(X))
       , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
       , isNePal(ok(X)) -> ok(isNePal(X))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  proper(__(X1, X2)) -> __(proper(X1), proper(X2))
               , proper(nil()) -> ok(nil())
               , proper(and(X1, X2)) -> and(proper(X1), proper(X2))
               , proper(tt()) -> ok(tt())
               , proper(isNePal(X)) -> isNePal(proper(X))
               , __(mark(X1), X2) -> mark(__(X1, X2))
               , __(X1, mark(X2)) -> mark(__(X1, X2))
               , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
               , and(mark(X1), X2) -> mark(and(X1, X2))
               , isNePal(mark(X)) -> mark(isNePal(X))
               , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
               , isNePal(ok(X)) -> ok(isNePal(X))
               , proper^#(and(X1, X2)) -> c_15(and^#(proper(X1), proper(X2)))
               , and^#(ok(X1), ok(X2)) -> c_19(and^#(X1, X2))
               , and^#(mark(X1), X2) -> c_11(and^#(X1, X2))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
             , and^#(ok(X1), ok(X2)) -> c_19(and^#(X1, X2))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  __(ok(X1), ok(X2)) -> ok(__(X1, X2))
               , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
               , and^#(ok(X1), ok(X2)) -> c_19(and^#(X1, X2))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [0]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isNePal(x1) = [1] x1 + [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [1]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4() = [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_8(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [1] x1 + [1]
                  c_12(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [1]
                  c_13(x1) = [0] x1 + [0]
                  c_14() = [0]
                  c_15(x1) = [1] x1 + [1]
                  c_16() = [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
                  c_19(x1) = [1] x1 + [1]
                  c_20(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {proper^#(and(X1, X2)) -> c_15(and^#(proper(X1), proper(X2)))}
            and weakly orienting the rules
            {  __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
             , and^#(ok(X1), ok(X2)) -> c_19(and^#(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {proper^#(and(X1, X2)) -> c_15(and^#(proper(X1), proper(X2)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [0]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isNePal(x1) = [1] x1 + [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [1]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4() = [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_8(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [1] x1 + [12]
                  c_12(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [3]
                  c_13(x1) = [0] x1 + [0]
                  c_14() = [0]
                  c_15(x1) = [1] x1 + [0]
                  c_16() = [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
                  c_19(x1) = [1] x1 + [1]
                  c_20(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {and^#(mark(X1), X2) -> c_11(and^#(X1, X2))}
            and weakly orienting the rules
            {  proper^#(and(X1, X2)) -> c_15(and^#(proper(X1), proper(X2)))
             , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
             , and^#(ok(X1), ok(X2)) -> c_19(and^#(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {and^#(mark(X1), X2) -> c_11(and^#(X1, X2))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [8]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isNePal(x1) = [1] x1 + [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [1]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4() = [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [1] x1 + [1] x2 + [1]
                  c_8(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [1] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [9]
                  c_13(x1) = [0] x1 + [0]
                  c_14() = [0]
                  c_15(x1) = [1] x1 + [0]
                  c_16() = [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
                  c_19(x1) = [1] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  proper(nil()) -> ok(nil())
             , proper(tt()) -> ok(tt())}
            and weakly orienting the rules
            {  and^#(mark(X1), X2) -> c_11(and^#(X1, X2))
             , proper^#(and(X1, X2)) -> c_15(and^#(proper(X1), proper(X2)))
             , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
             , and^#(ok(X1), ok(X2)) -> c_19(and^#(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  proper(nil()) -> ok(nil())
               , proper(tt()) -> ok(tt())}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [8]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isNePal(x1) = [1] x1 + [8]
                  proper(x1) = [1] x1 + [2]
                  ok(x1) = [1] x1 + [1]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4() = [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [1] x1 + [1] x2 + [2]
                  c_8(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [1] x1 + [3]
                  c_12(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [9]
                  c_13(x1) = [0] x1 + [0]
                  c_14() = [0]
                  c_15(x1) = [1] x1 + [1]
                  c_16() = [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
                  c_19(x1) = [1] x1 + [1]
                  c_20(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  proper(__(X1, X2)) -> __(proper(X1), proper(X2))
                 , proper(and(X1, X2)) -> and(proper(X1), proper(X2))
                 , proper(isNePal(X)) -> isNePal(proper(X))
                 , __(mark(X1), X2) -> mark(__(X1, X2))
                 , __(X1, mark(X2)) -> mark(__(X1, X2))
                 , and(mark(X1), X2) -> mark(and(X1, X2))
                 , isNePal(mark(X)) -> mark(isNePal(X))
                 , isNePal(ok(X)) -> ok(isNePal(X))}
              Weak Rules:
                {  proper(nil()) -> ok(nil())
                 , proper(tt()) -> ok(tt())
                 , and^#(mark(X1), X2) -> c_11(and^#(X1, X2))
                 , proper^#(and(X1, X2)) -> c_15(and^#(proper(X1), proper(X2)))
                 , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
                 , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
                 , and^#(ok(X1), ok(X2)) -> c_19(and^#(X1, X2))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  proper(__(X1, X2)) -> __(proper(X1), proper(X2))
                   , proper(and(X1, X2)) -> and(proper(X1), proper(X2))
                   , proper(isNePal(X)) -> isNePal(proper(X))
                   , __(mark(X1), X2) -> mark(__(X1, X2))
                   , __(X1, mark(X2)) -> mark(__(X1, X2))
                   , and(mark(X1), X2) -> mark(and(X1, X2))
                   , isNePal(mark(X)) -> mark(isNePal(X))
                   , isNePal(ok(X)) -> ok(isNePal(X))}
                Weak Rules:
                  {  proper(nil()) -> ok(nil())
                   , proper(tt()) -> ok(tt())
                   , and^#(mark(X1), X2) -> c_11(and^#(X1, X2))
                   , proper^#(and(X1, X2)) -> c_15(and^#(proper(X1), proper(X2)))
                   , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
                   , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
                   , and^#(ok(X1), ok(X2)) -> c_19(and^#(X1, X2))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  mark_0(3) -> 3
                 , mark_0(4) -> 3
                 , mark_0(6) -> 3
                 , mark_0(9) -> 3
                 , nil_0() -> 4
                 , tt_0() -> 6
                 , ok_0(3) -> 9
                 , ok_0(4) -> 9
                 , ok_0(6) -> 9
                 , ok_0(9) -> 9
                 , and^#_0(3, 3) -> 21
                 , and^#_0(3, 4) -> 21
                 , and^#_0(3, 6) -> 21
                 , and^#_0(3, 9) -> 21
                 , and^#_0(4, 3) -> 21
                 , and^#_0(4, 4) -> 21
                 , and^#_0(4, 6) -> 21
                 , and^#_0(4, 9) -> 21
                 , and^#_0(6, 3) -> 21
                 , and^#_0(6, 4) -> 21
                 , and^#_0(6, 6) -> 21
                 , and^#_0(6, 9) -> 21
                 , and^#_0(9, 3) -> 21
                 , and^#_0(9, 4) -> 21
                 , and^#_0(9, 6) -> 21
                 , and^#_0(9, 9) -> 21
                 , c_11_0(21) -> 21
                 , proper^#_0(3) -> 28
                 , proper^#_0(4) -> 28
                 , proper^#_0(6) -> 28
                 , proper^#_0(9) -> 28
                 , c_19_0(21) -> 21}
      
   13)
      {proper^#(__(X1, X2)) -> c_13(__^#(proper(X1), proper(X2)))}
      
      The usable rules for this path are the following:
      {  proper(__(X1, X2)) -> __(proper(X1), proper(X2))
       , proper(nil()) -> ok(nil())
       , proper(and(X1, X2)) -> and(proper(X1), proper(X2))
       , proper(tt()) -> ok(tt())
       , proper(isNePal(X)) -> isNePal(proper(X))
       , __(mark(X1), X2) -> mark(__(X1, X2))
       , __(X1, mark(X2)) -> mark(__(X1, X2))
       , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
       , and(mark(X1), X2) -> mark(and(X1, X2))
       , isNePal(mark(X)) -> mark(isNePal(X))
       , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
       , isNePal(ok(X)) -> ok(isNePal(X))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  proper(__(X1, X2)) -> __(proper(X1), proper(X2))
               , proper(nil()) -> ok(nil())
               , proper(and(X1, X2)) -> and(proper(X1), proper(X2))
               , proper(tt()) -> ok(tt())
               , proper(isNePal(X)) -> isNePal(proper(X))
               , __(mark(X1), X2) -> mark(__(X1, X2))
               , __(X1, mark(X2)) -> mark(__(X1, X2))
               , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
               , and(mark(X1), X2) -> mark(and(X1, X2))
               , isNePal(mark(X)) -> mark(isNePal(X))
               , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
               , isNePal(ok(X)) -> ok(isNePal(X))
               , proper^#(__(X1, X2)) -> c_13(__^#(proper(X1), proper(X2)))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  __(ok(X1), ok(X2)) -> ok(__(X1, X2))
               , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [1]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isNePal(x1) = [1] x1 + [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [1]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4() = [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_8(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [1]
                  c_13(x1) = [1] x1 + [1]
                  c_14() = [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16() = [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {proper^#(__(X1, X2)) -> c_13(__^#(proper(X1), proper(X2)))}
            and weakly orienting the rules
            {  __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {proper^#(__(X1, X2)) -> c_13(__^#(proper(X1), proper(X2)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [1]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isNePal(x1) = [1] x1 + [2]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [1]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4() = [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_8(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [9]
                  c_13(x1) = [1] x1 + [1]
                  c_14() = [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16() = [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  proper(nil()) -> ok(nil())
             , proper(tt()) -> ok(tt())}
            and weakly orienting the rules
            {  proper^#(__(X1, X2)) -> c_13(__^#(proper(X1), proper(X2)))
             , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  proper(nil()) -> ok(nil())
               , proper(tt()) -> ok(tt())}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  __(x1, x2) = [1] x1 + [1] x2 + [2]
                  mark(x1) = [1] x1 + [0]
                  nil() = [8]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isNePal(x1) = [1] x1 + [1]
                  proper(x1) = [1] x1 + [8]
                  ok(x1) = [1] x1 + [7]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [1] x1 + [1] x2 + [1]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4() = [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_8(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [15]
                  c_13(x1) = [1] x1 + [0]
                  c_14() = [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16() = [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  proper(__(X1, X2)) -> __(proper(X1), proper(X2))
                 , proper(and(X1, X2)) -> and(proper(X1), proper(X2))
                 , proper(isNePal(X)) -> isNePal(proper(X))
                 , __(mark(X1), X2) -> mark(__(X1, X2))
                 , __(X1, mark(X2)) -> mark(__(X1, X2))
                 , and(mark(X1), X2) -> mark(and(X1, X2))
                 , isNePal(mark(X)) -> mark(isNePal(X))
                 , isNePal(ok(X)) -> ok(isNePal(X))}
              Weak Rules:
                {  proper(nil()) -> ok(nil())
                 , proper(tt()) -> ok(tt())
                 , proper^#(__(X1, X2)) -> c_13(__^#(proper(X1), proper(X2)))
                 , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
                 , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  proper(__(X1, X2)) -> __(proper(X1), proper(X2))
                   , proper(and(X1, X2)) -> and(proper(X1), proper(X2))
                   , proper(isNePal(X)) -> isNePal(proper(X))
                   , __(mark(X1), X2) -> mark(__(X1, X2))
                   , __(X1, mark(X2)) -> mark(__(X1, X2))
                   , and(mark(X1), X2) -> mark(and(X1, X2))
                   , isNePal(mark(X)) -> mark(isNePal(X))
                   , isNePal(ok(X)) -> ok(isNePal(X))}
                Weak Rules:
                  {  proper(nil()) -> ok(nil())
                   , proper(tt()) -> ok(tt())
                   , proper^#(__(X1, X2)) -> c_13(__^#(proper(X1), proper(X2)))
                   , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
                   , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  mark_0(3) -> 3
                 , mark_0(4) -> 3
                 , mark_0(6) -> 3
                 , mark_0(9) -> 3
                 , nil_0() -> 4
                 , tt_0() -> 6
                 , ok_0(3) -> 9
                 , ok_0(4) -> 9
                 , ok_0(6) -> 9
                 , ok_0(9) -> 9
                 , __^#_0(3, 3) -> 13
                 , __^#_0(3, 4) -> 13
                 , __^#_0(3, 6) -> 13
                 , __^#_0(3, 9) -> 13
                 , __^#_0(4, 3) -> 13
                 , __^#_0(4, 4) -> 13
                 , __^#_0(4, 6) -> 13
                 , __^#_0(4, 9) -> 13
                 , __^#_0(6, 3) -> 13
                 , __^#_0(6, 4) -> 13
                 , __^#_0(6, 6) -> 13
                 , __^#_0(6, 9) -> 13
                 , __^#_0(9, 3) -> 13
                 , __^#_0(9, 4) -> 13
                 , __^#_0(9, 6) -> 13
                 , __^#_0(9, 9) -> 13
                 , proper^#_0(3) -> 28
                 , proper^#_0(4) -> 28
                 , proper^#_0(6) -> 28
                 , proper^#_0(9) -> 28}
      
   14)
      {proper^#(and(X1, X2)) -> c_15(and^#(proper(X1), proper(X2)))}
      
      The usable rules for this path are the following:
      {  proper(__(X1, X2)) -> __(proper(X1), proper(X2))
       , proper(nil()) -> ok(nil())
       , proper(and(X1, X2)) -> and(proper(X1), proper(X2))
       , proper(tt()) -> ok(tt())
       , proper(isNePal(X)) -> isNePal(proper(X))
       , __(mark(X1), X2) -> mark(__(X1, X2))
       , __(X1, mark(X2)) -> mark(__(X1, X2))
       , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
       , and(mark(X1), X2) -> mark(and(X1, X2))
       , isNePal(mark(X)) -> mark(isNePal(X))
       , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
       , isNePal(ok(X)) -> ok(isNePal(X))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  proper(__(X1, X2)) -> __(proper(X1), proper(X2))
               , proper(nil()) -> ok(nil())
               , proper(and(X1, X2)) -> and(proper(X1), proper(X2))
               , proper(tt()) -> ok(tt())
               , proper(isNePal(X)) -> isNePal(proper(X))
               , __(mark(X1), X2) -> mark(__(X1, X2))
               , __(X1, mark(X2)) -> mark(__(X1, X2))
               , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
               , and(mark(X1), X2) -> mark(and(X1, X2))
               , isNePal(mark(X)) -> mark(isNePal(X))
               , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
               , isNePal(ok(X)) -> ok(isNePal(X))
               , proper^#(and(X1, X2)) -> c_15(and^#(proper(X1), proper(X2)))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  __(ok(X1), ok(X2)) -> ok(__(X1, X2))
               , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [1]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isNePal(x1) = [1] x1 + [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [1]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4() = [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_8(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [1]
                  c_13(x1) = [0] x1 + [0]
                  c_14() = [0]
                  c_15(x1) = [1] x1 + [1]
                  c_16() = [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {proper^#(and(X1, X2)) -> c_15(and^#(proper(X1), proper(X2)))}
            and weakly orienting the rules
            {  __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {proper^#(and(X1, X2)) -> c_15(and^#(proper(X1), proper(X2)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [1]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isNePal(x1) = [1] x1 + [2]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [1]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4() = [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_8(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [9]
                  c_13(x1) = [0] x1 + [0]
                  c_14() = [0]
                  c_15(x1) = [1] x1 + [1]
                  c_16() = [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  proper(nil()) -> ok(nil())
             , proper(tt()) -> ok(tt())}
            and weakly orienting the rules
            {  proper^#(and(X1, X2)) -> c_15(and^#(proper(X1), proper(X2)))
             , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  proper(nil()) -> ok(nil())
               , proper(tt()) -> ok(tt())}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [0]
                  nil() = [8]
                  and(x1, x2) = [1] x1 + [1] x2 + [2]
                  tt() = [0]
                  isNePal(x1) = [1] x1 + [1]
                  proper(x1) = [1] x1 + [8]
                  ok(x1) = [1] x1 + [7]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4() = [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [1] x1 + [1] x2 + [1]
                  c_8(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [15]
                  c_13(x1) = [0] x1 + [0]
                  c_14() = [0]
                  c_15(x1) = [1] x1 + [0]
                  c_16() = [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  proper(__(X1, X2)) -> __(proper(X1), proper(X2))
                 , proper(and(X1, X2)) -> and(proper(X1), proper(X2))
                 , proper(isNePal(X)) -> isNePal(proper(X))
                 , __(mark(X1), X2) -> mark(__(X1, X2))
                 , __(X1, mark(X2)) -> mark(__(X1, X2))
                 , and(mark(X1), X2) -> mark(and(X1, X2))
                 , isNePal(mark(X)) -> mark(isNePal(X))
                 , isNePal(ok(X)) -> ok(isNePal(X))}
              Weak Rules:
                {  proper(nil()) -> ok(nil())
                 , proper(tt()) -> ok(tt())
                 , proper^#(and(X1, X2)) -> c_15(and^#(proper(X1), proper(X2)))
                 , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
                 , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  proper(__(X1, X2)) -> __(proper(X1), proper(X2))
                   , proper(and(X1, X2)) -> and(proper(X1), proper(X2))
                   , proper(isNePal(X)) -> isNePal(proper(X))
                   , __(mark(X1), X2) -> mark(__(X1, X2))
                   , __(X1, mark(X2)) -> mark(__(X1, X2))
                   , and(mark(X1), X2) -> mark(and(X1, X2))
                   , isNePal(mark(X)) -> mark(isNePal(X))
                   , isNePal(ok(X)) -> ok(isNePal(X))}
                Weak Rules:
                  {  proper(nil()) -> ok(nil())
                   , proper(tt()) -> ok(tt())
                   , proper^#(and(X1, X2)) -> c_15(and^#(proper(X1), proper(X2)))
                   , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
                   , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  mark_0(3) -> 3
                 , mark_0(4) -> 3
                 , mark_0(6) -> 3
                 , mark_0(9) -> 3
                 , nil_0() -> 4
                 , tt_0() -> 6
                 , ok_0(3) -> 9
                 , ok_0(4) -> 9
                 , ok_0(6) -> 9
                 , ok_0(9) -> 9
                 , and^#_0(3, 3) -> 21
                 , and^#_0(3, 4) -> 21
                 , and^#_0(3, 6) -> 21
                 , and^#_0(3, 9) -> 21
                 , and^#_0(4, 3) -> 21
                 , and^#_0(4, 4) -> 21
                 , and^#_0(4, 6) -> 21
                 , and^#_0(4, 9) -> 21
                 , and^#_0(6, 3) -> 21
                 , and^#_0(6, 4) -> 21
                 , and^#_0(6, 6) -> 21
                 , and^#_0(6, 9) -> 21
                 , and^#_0(9, 3) -> 21
                 , and^#_0(9, 4) -> 21
                 , and^#_0(9, 6) -> 21
                 , and^#_0(9, 9) -> 21
                 , proper^#_0(3) -> 28
                 , proper^#_0(4) -> 28
                 , proper^#_0(6) -> 28
                 , proper^#_0(9) -> 28}
      
   15)
      {proper^#(isNePal(X)) -> c_17(isNePal^#(proper(X)))}
      
      The usable rules for this path are the following:
      {  proper(__(X1, X2)) -> __(proper(X1), proper(X2))
       , proper(nil()) -> ok(nil())
       , proper(and(X1, X2)) -> and(proper(X1), proper(X2))
       , proper(tt()) -> ok(tt())
       , proper(isNePal(X)) -> isNePal(proper(X))
       , __(mark(X1), X2) -> mark(__(X1, X2))
       , __(X1, mark(X2)) -> mark(__(X1, X2))
       , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
       , and(mark(X1), X2) -> mark(and(X1, X2))
       , isNePal(mark(X)) -> mark(isNePal(X))
       , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
       , isNePal(ok(X)) -> ok(isNePal(X))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  proper(__(X1, X2)) -> __(proper(X1), proper(X2))
               , proper(nil()) -> ok(nil())
               , proper(and(X1, X2)) -> and(proper(X1), proper(X2))
               , proper(tt()) -> ok(tt())
               , proper(isNePal(X)) -> isNePal(proper(X))
               , __(mark(X1), X2) -> mark(__(X1, X2))
               , __(X1, mark(X2)) -> mark(__(X1, X2))
               , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
               , and(mark(X1), X2) -> mark(and(X1, X2))
               , isNePal(mark(X)) -> mark(isNePal(X))
               , and(ok(X1), ok(X2)) -> ok(and(X1, X2))
               , isNePal(ok(X)) -> ok(isNePal(X))
               , proper^#(isNePal(X)) -> c_17(isNePal^#(proper(X)))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  __(ok(X1), ok(X2)) -> ok(__(X1, X2))
               , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [0]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isNePal(x1) = [1] x1 + [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [1]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4() = [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_8(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [1] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [1]
                  c_13(x1) = [0] x1 + [0]
                  c_14() = [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16() = [0]
                  c_17(x1) = [1] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {proper^#(isNePal(X)) -> c_17(isNePal^#(proper(X)))}
            and weakly orienting the rules
            {  __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {proper^#(isNePal(X)) -> c_17(isNePal^#(proper(X)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [0]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isNePal(x1) = [1] x1 + [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [1]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4() = [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_8(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [1] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [9]
                  c_13(x1) = [0] x1 + [0]
                  c_14() = [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16() = [0]
                  c_17(x1) = [1] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  proper(nil()) -> ok(nil())
             , proper(tt()) -> ok(tt())}
            and weakly orienting the rules
            {  proper^#(isNePal(X)) -> c_17(isNePal^#(proper(X)))
             , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  proper(nil()) -> ok(nil())
               , proper(tt()) -> ok(tt())}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [1] x1 + [0]
                  nil() = [15]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isNePal(x1) = [1] x1 + [0]
                  proper(x1) = [1] x1 + [1]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4() = [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_8(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [1] x1 + [2]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [9]
                  c_13(x1) = [0] x1 + [0]
                  c_14() = [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16() = [0]
                  c_17(x1) = [1] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  proper(__(X1, X2)) -> __(proper(X1), proper(X2))
                 , proper(and(X1, X2)) -> and(proper(X1), proper(X2))
                 , proper(isNePal(X)) -> isNePal(proper(X))
                 , __(mark(X1), X2) -> mark(__(X1, X2))
                 , __(X1, mark(X2)) -> mark(__(X1, X2))
                 , and(mark(X1), X2) -> mark(and(X1, X2))
                 , isNePal(mark(X)) -> mark(isNePal(X))
                 , isNePal(ok(X)) -> ok(isNePal(X))}
              Weak Rules:
                {  proper(nil()) -> ok(nil())
                 , proper(tt()) -> ok(tt())
                 , proper^#(isNePal(X)) -> c_17(isNePal^#(proper(X)))
                 , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
                 , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  proper(__(X1, X2)) -> __(proper(X1), proper(X2))
                   , proper(and(X1, X2)) -> and(proper(X1), proper(X2))
                   , proper(isNePal(X)) -> isNePal(proper(X))
                   , __(mark(X1), X2) -> mark(__(X1, X2))
                   , __(X1, mark(X2)) -> mark(__(X1, X2))
                   , and(mark(X1), X2) -> mark(and(X1, X2))
                   , isNePal(mark(X)) -> mark(isNePal(X))
                   , isNePal(ok(X)) -> ok(isNePal(X))}
                Weak Rules:
                  {  proper(nil()) -> ok(nil())
                   , proper(tt()) -> ok(tt())
                   , proper^#(isNePal(X)) -> c_17(isNePal^#(proper(X)))
                   , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
                   , and(ok(X1), ok(X2)) -> ok(and(X1, X2))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  mark_0(3) -> 3
                 , mark_0(4) -> 3
                 , mark_0(6) -> 3
                 , mark_0(9) -> 3
                 , nil_0() -> 4
                 , tt_0() -> 6
                 , ok_0(3) -> 9
                 , ok_0(4) -> 9
                 , ok_0(6) -> 9
                 , ok_0(9) -> 9
                 , isNePal^#_0(3) -> 23
                 , isNePal^#_0(4) -> 23
                 , isNePal^#_0(6) -> 23
                 , isNePal^#_0(9) -> 23
                 , proper^#_0(3) -> 28
                 , proper^#_0(4) -> 28
                 , proper^#_0(6) -> 28
                 , proper^#_0(9) -> 28}
      
   16)
      {  active^#(__(__(X, Y), Z)) -> c_0(__^#(X, __(Y, Z)))
       , __^#(ok(X1), ok(X2)) -> c_18(__^#(X1, X2))
       , __^#(X1, mark(X2)) -> c_10(__^#(X1, X2))
       , __^#(mark(X1), X2) -> c_9(__^#(X1, X2))}
      
      The usable rules for this path are the following:
      {  __(mark(X1), X2) -> mark(__(X1, X2))
       , __(X1, mark(X2)) -> mark(__(X1, X2))
       , __(ok(X1), ok(X2)) -> ok(__(X1, X2))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  __(mark(X1), X2) -> mark(__(X1, X2))
               , __(X1, mark(X2)) -> mark(__(X1, X2))
               , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
               , active^#(__(__(X, Y), Z)) -> c_0(__^#(X, __(Y, Z)))
               , __^#(ok(X1), ok(X2)) -> c_18(__^#(X1, X2))
               , __^#(X1, mark(X2)) -> c_10(__^#(X1, X2))
               , __^#(mark(X1), X2) -> c_9(__^#(X1, X2))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {active^#(__(__(X, Y), Z)) -> c_0(__^#(X, __(Y, Z)))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active^#(__(__(X, Y), Z)) -> c_0(__^#(X, __(Y, Z)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  __(x1, x2) = [1] x1 + [1] x2 + [1]
                  mark(x1) = [1] x1 + [0]
                  nil() = [0]
                  and(x1, x2) = [0] x1 + [0] x2 + [0]
                  tt() = [0]
                  isNePal(x1) = [0] x1 + [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0(x1) = [1] x1 + [0]
                  __^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4() = [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_8(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_9(x1) = [1] x1 + [1]
                  c_10(x1) = [1] x1 + [1]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14() = [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16() = [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [1] x1 + [1]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , __^#(ok(X1), ok(X2)) -> c_18(__^#(X1, X2))}
            and weakly orienting the rules
            {active^#(__(__(X, Y), Z)) -> c_0(__^#(X, __(Y, Z)))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  __(ok(X1), ok(X2)) -> ok(__(X1, X2))
               , __^#(ok(X1), ok(X2)) -> c_18(__^#(X1, X2))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  __(x1, x2) = [1] x1 + [1] x2 + [1]
                  mark(x1) = [1] x1 + [0]
                  nil() = [0]
                  and(x1, x2) = [0] x1 + [0] x2 + [0]
                  tt() = [0]
                  isNePal(x1) = [0] x1 + [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [8]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [2]
                  c_0(x1) = [1] x1 + [2]
                  __^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4() = [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_8(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_9(x1) = [1] x1 + [0]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14() = [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16() = [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [1] x1 + [1]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  __^#(X1, mark(X2)) -> c_10(__^#(X1, X2))
             , __^#(mark(X1), X2) -> c_9(__^#(X1, X2))}
            and weakly orienting the rules
            {  __(ok(X1), ok(X2)) -> ok(__(X1, X2))
             , __^#(ok(X1), ok(X2)) -> c_18(__^#(X1, X2))
             , active^#(__(__(X, Y), Z)) -> c_0(__^#(X, __(Y, Z)))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  __^#(X1, mark(X2)) -> c_10(__^#(X1, X2))
               , __^#(mark(X1), X2) -> c_9(__^#(X1, X2))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  __(x1, x2) = [1] x1 + [1] x2 + [1]
                  mark(x1) = [1] x1 + [8]
                  nil() = [0]
                  and(x1, x2) = [0] x1 + [0] x2 + [0]
                  tt() = [0]
                  isNePal(x1) = [0] x1 + [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [1]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [3]
                  c_0(x1) = [1] x1 + [4]
                  __^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4() = [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_8(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_9(x1) = [1] x1 + [1]
                  c_10(x1) = [1] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14() = [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16() = [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [1] x1 + [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  __(mark(X1), X2) -> mark(__(X1, X2))
                 , __(X1, mark(X2)) -> mark(__(X1, X2))}
              Weak Rules:
                {  __^#(X1, mark(X2)) -> c_10(__^#(X1, X2))
                 , __^#(mark(X1), X2) -> c_9(__^#(X1, X2))
                 , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
                 , __^#(ok(X1), ok(X2)) -> c_18(__^#(X1, X2))
                 , active^#(__(__(X, Y), Z)) -> c_0(__^#(X, __(Y, Z)))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  __(mark(X1), X2) -> mark(__(X1, X2))
                   , __(X1, mark(X2)) -> mark(__(X1, X2))}
                Weak Rules:
                  {  __^#(X1, mark(X2)) -> c_10(__^#(X1, X2))
                   , __^#(mark(X1), X2) -> c_9(__^#(X1, X2))
                   , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
                   , __^#(ok(X1), ok(X2)) -> c_18(__^#(X1, X2))
                   , active^#(__(__(X, Y), Z)) -> c_0(__^#(X, __(Y, Z)))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  mark_0(3) -> 3
                 , mark_0(9) -> 3
                 , ok_0(3) -> 9
                 , ok_0(9) -> 9
                 , active^#_0(3) -> 11
                 , active^#_0(9) -> 11
                 , __^#_0(3, 3) -> 13
                 , __^#_0(3, 9) -> 13
                 , __^#_0(9, 3) -> 13
                 , __^#_0(9, 9) -> 13
                 , c_9_0(13) -> 13
                 , c_10_0(13) -> 13
                 , c_18_0(13) -> 13}
      
   17)
      {active^#(__(__(X, Y), Z)) -> c_0(__^#(X, __(Y, Z)))}
      
      The usable rules for this path are the following:
      {  __(mark(X1), X2) -> mark(__(X1, X2))
       , __(X1, mark(X2)) -> mark(__(X1, X2))
       , __(ok(X1), ok(X2)) -> ok(__(X1, X2))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  __(mark(X1), X2) -> mark(__(X1, X2))
               , __(X1, mark(X2)) -> mark(__(X1, X2))
               , __(ok(X1), ok(X2)) -> ok(__(X1, X2))
               , active^#(__(__(X, Y), Z)) -> c_0(__^#(X, __(Y, Z)))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {active^#(__(__(X, Y), Z)) -> c_0(__^#(X, __(Y, Z)))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active^#(__(__(X, Y), Z)) -> c_0(__^#(X, __(Y, Z)))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  __(x1, x2) = [1] x1 + [1] x2 + [1]
                  mark(x1) = [1] x1 + [0]
                  nil() = [0]
                  and(x1, x2) = [0] x1 + [0] x2 + [0]
                  tt() = [0]
                  isNePal(x1) = [0] x1 + [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0(x1) = [1] x1 + [0]
                  __^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4() = [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_8(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14() = [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16() = [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {__(ok(X1), ok(X2)) -> ok(__(X1, X2))}
            and weakly orienting the rules
            {active^#(__(__(X, Y), Z)) -> c_0(__^#(X, __(Y, Z)))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {__(ok(X1), ok(X2)) -> ok(__(X1, X2))}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  __(x1, x2) = [1] x1 + [1] x2 + [1]
                  mark(x1) = [1] x1 + [0]
                  nil() = [0]
                  and(x1, x2) = [0] x1 + [0] x2 + [0]
                  tt() = [0]
                  isNePal(x1) = [0] x1 + [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [1] x1 + [8]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [9]
                  c_0(x1) = [1] x1 + [0]
                  __^#(x1, x2) = [1] x1 + [1] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4() = [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_8(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14() = [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16() = [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  __(mark(X1), X2) -> mark(__(X1, X2))
                 , __(X1, mark(X2)) -> mark(__(X1, X2))}
              Weak Rules:
                {  __(ok(X1), ok(X2)) -> ok(__(X1, X2))
                 , active^#(__(__(X, Y), Z)) -> c_0(__^#(X, __(Y, Z)))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  __(mark(X1), X2) -> mark(__(X1, X2))
                   , __(X1, mark(X2)) -> mark(__(X1, X2))}
                Weak Rules:
                  {  __(ok(X1), ok(X2)) -> ok(__(X1, X2))
                   , active^#(__(__(X, Y), Z)) -> c_0(__^#(X, __(Y, Z)))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  mark_0(3) -> 3
                 , mark_0(9) -> 3
                 , ok_0(3) -> 9
                 , ok_0(9) -> 9
                 , active^#_0(3) -> 11
                 , active^#_0(9) -> 11
                 , __^#_0(3, 3) -> 13
                 , __^#_0(3, 9) -> 13
                 , __^#_0(9, 3) -> 13
                 , __^#_0(9, 9) -> 13}
      
   18)
      {active^#(__(nil(), X)) -> c_2()}
      
      The usable rules for this path are empty.
      
        We have oriented the usable rules with the following strongly linear interpretation:
          Interpretation Functions:
           active(x1) = [0] x1 + [0]
           __(x1, x2) = [0] x1 + [0] x2 + [0]
           mark(x1) = [0] x1 + [0]
           nil() = [0]
           and(x1, x2) = [0] x1 + [0] x2 + [0]
           tt() = [0]
           isNePal(x1) = [0] x1 + [0]
           proper(x1) = [0] x1 + [0]
           ok(x1) = [0] x1 + [0]
           top(x1) = [0] x1 + [0]
           active^#(x1) = [0] x1 + [0]
           c_0(x1) = [0] x1 + [0]
           __^#(x1, x2) = [0] x1 + [0] x2 + [0]
           c_1() = [0]
           c_2() = [0]
           c_3() = [0]
           c_4() = [0]
           c_5(x1) = [0] x1 + [0]
           c_6(x1) = [0] x1 + [0]
           c_7(x1) = [0] x1 + [0]
           and^#(x1, x2) = [0] x1 + [0] x2 + [0]
           c_8(x1) = [0] x1 + [0]
           isNePal^#(x1) = [0] x1 + [0]
           c_9(x1) = [0] x1 + [0]
           c_10(x1) = [0] x1 + [0]
           c_11(x1) = [0] x1 + [0]
           c_12(x1) = [0] x1 + [0]
           proper^#(x1) = [0] x1 + [0]
           c_13(x1) = [0] x1 + [0]
           c_14() = [0]
           c_15(x1) = [0] x1 + [0]
           c_16() = [0]
           c_17(x1) = [0] x1 + [0]
           c_18(x1) = [0] x1 + [0]
           c_19(x1) = [0] x1 + [0]
           c_20(x1) = [0] x1 + [0]
           top^#(x1) = [0] x1 + [0]
           c_21(x1) = [0] x1 + [0]
           c_22(x1) = [0] x1 + [0]
        
        We have applied the subprocessor on the resulting DP-problem:
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost DP runtime-complexity with respect to
            Strict Rules: {active^#(__(nil(), X)) -> c_2()}
            Weak Rules: {}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {active^#(__(nil(), X)) -> c_2()}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active^#(__(nil(), X)) -> c_2()}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [0] x1 + [0]
                  nil() = [0]
                  and(x1, x2) = [0] x1 + [0] x2 + [0]
                  tt() = [0]
                  isNePal(x1) = [0] x1 + [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [0] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4() = [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_8(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14() = [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16() = [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'Empty TRS'
            -----------
            Answer:           YES(?,O(1))
            Input Problem:    innermost DP runtime-complexity with respect to
              Strict Rules: {}
              Weak Rules: {active^#(__(nil(), X)) -> c_2()}
            
            Details:         
              The given problem does not contain any strict rules
      
   19)
      {active^#(isNePal(__(I, __(P, I)))) -> c_4()}
      
      The usable rules for this path are empty.
      
        We have oriented the usable rules with the following strongly linear interpretation:
          Interpretation Functions:
           active(x1) = [0] x1 + [0]
           __(x1, x2) = [0] x1 + [0] x2 + [0]
           mark(x1) = [0] x1 + [0]
           nil() = [0]
           and(x1, x2) = [0] x1 + [0] x2 + [0]
           tt() = [0]
           isNePal(x1) = [0] x1 + [0]
           proper(x1) = [0] x1 + [0]
           ok(x1) = [0] x1 + [0]
           top(x1) = [0] x1 + [0]
           active^#(x1) = [0] x1 + [0]
           c_0(x1) = [0] x1 + [0]
           __^#(x1, x2) = [0] x1 + [0] x2 + [0]
           c_1() = [0]
           c_2() = [0]
           c_3() = [0]
           c_4() = [0]
           c_5(x1) = [0] x1 + [0]
           c_6(x1) = [0] x1 + [0]
           c_7(x1) = [0] x1 + [0]
           and^#(x1, x2) = [0] x1 + [0] x2 + [0]
           c_8(x1) = [0] x1 + [0]
           isNePal^#(x1) = [0] x1 + [0]
           c_9(x1) = [0] x1 + [0]
           c_10(x1) = [0] x1 + [0]
           c_11(x1) = [0] x1 + [0]
           c_12(x1) = [0] x1 + [0]
           proper^#(x1) = [0] x1 + [0]
           c_13(x1) = [0] x1 + [0]
           c_14() = [0]
           c_15(x1) = [0] x1 + [0]
           c_16() = [0]
           c_17(x1) = [0] x1 + [0]
           c_18(x1) = [0] x1 + [0]
           c_19(x1) = [0] x1 + [0]
           c_20(x1) = [0] x1 + [0]
           top^#(x1) = [0] x1 + [0]
           c_21(x1) = [0] x1 + [0]
           c_22(x1) = [0] x1 + [0]
        
        We have applied the subprocessor on the resulting DP-problem:
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost DP runtime-complexity with respect to
            Strict Rules: {active^#(isNePal(__(I, __(P, I)))) -> c_4()}
            Weak Rules: {}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {active^#(isNePal(__(I, __(P, I)))) -> c_4()}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active^#(isNePal(__(I, __(P, I)))) -> c_4()}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [0] x1 + [0]
                  nil() = [0]
                  and(x1, x2) = [0] x1 + [0] x2 + [0]
                  tt() = [0]
                  isNePal(x1) = [1] x1 + [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [0] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4() = [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_8(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14() = [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16() = [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'Empty TRS'
            -----------
            Answer:           YES(?,O(1))
            Input Problem:    innermost DP runtime-complexity with respect to
              Strict Rules: {}
              Weak Rules: {active^#(isNePal(__(I, __(P, I)))) -> c_4()}
            
            Details:         
              The given problem does not contain any strict rules
      
   20)
      {active^#(__(X, nil())) -> c_1()}
      
      The usable rules for this path are empty.
      
        We have oriented the usable rules with the following strongly linear interpretation:
          Interpretation Functions:
           active(x1) = [0] x1 + [0]
           __(x1, x2) = [0] x1 + [0] x2 + [0]
           mark(x1) = [0] x1 + [0]
           nil() = [0]
           and(x1, x2) = [0] x1 + [0] x2 + [0]
           tt() = [0]
           isNePal(x1) = [0] x1 + [0]
           proper(x1) = [0] x1 + [0]
           ok(x1) = [0] x1 + [0]
           top(x1) = [0] x1 + [0]
           active^#(x1) = [0] x1 + [0]
           c_0(x1) = [0] x1 + [0]
           __^#(x1, x2) = [0] x1 + [0] x2 + [0]
           c_1() = [0]
           c_2() = [0]
           c_3() = [0]
           c_4() = [0]
           c_5(x1) = [0] x1 + [0]
           c_6(x1) = [0] x1 + [0]
           c_7(x1) = [0] x1 + [0]
           and^#(x1, x2) = [0] x1 + [0] x2 + [0]
           c_8(x1) = [0] x1 + [0]
           isNePal^#(x1) = [0] x1 + [0]
           c_9(x1) = [0] x1 + [0]
           c_10(x1) = [0] x1 + [0]
           c_11(x1) = [0] x1 + [0]
           c_12(x1) = [0] x1 + [0]
           proper^#(x1) = [0] x1 + [0]
           c_13(x1) = [0] x1 + [0]
           c_14() = [0]
           c_15(x1) = [0] x1 + [0]
           c_16() = [0]
           c_17(x1) = [0] x1 + [0]
           c_18(x1) = [0] x1 + [0]
           c_19(x1) = [0] x1 + [0]
           c_20(x1) = [0] x1 + [0]
           top^#(x1) = [0] x1 + [0]
           c_21(x1) = [0] x1 + [0]
           c_22(x1) = [0] x1 + [0]
        
        We have applied the subprocessor on the resulting DP-problem:
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost DP runtime-complexity with respect to
            Strict Rules: {active^#(__(X, nil())) -> c_1()}
            Weak Rules: {}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {active^#(__(X, nil())) -> c_1()}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active^#(__(X, nil())) -> c_1()}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  __(x1, x2) = [1] x1 + [1] x2 + [0]
                  mark(x1) = [0] x1 + [0]
                  nil() = [0]
                  and(x1, x2) = [0] x1 + [0] x2 + [0]
                  tt() = [0]
                  isNePal(x1) = [0] x1 + [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [0] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4() = [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_8(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14() = [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16() = [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'Empty TRS'
            -----------
            Answer:           YES(?,O(1))
            Input Problem:    innermost DP runtime-complexity with respect to
              Strict Rules: {}
              Weak Rules: {active^#(__(X, nil())) -> c_1()}
            
            Details:         
              The given problem does not contain any strict rules
      
   21)
      {active^#(and(tt(), X)) -> c_3()}
      
      The usable rules for this path are empty.
      
        We have oriented the usable rules with the following strongly linear interpretation:
          Interpretation Functions:
           active(x1) = [0] x1 + [0]
           __(x1, x2) = [0] x1 + [0] x2 + [0]
           mark(x1) = [0] x1 + [0]
           nil() = [0]
           and(x1, x2) = [0] x1 + [0] x2 + [0]
           tt() = [0]
           isNePal(x1) = [0] x1 + [0]
           proper(x1) = [0] x1 + [0]
           ok(x1) = [0] x1 + [0]
           top(x1) = [0] x1 + [0]
           active^#(x1) = [0] x1 + [0]
           c_0(x1) = [0] x1 + [0]
           __^#(x1, x2) = [0] x1 + [0] x2 + [0]
           c_1() = [0]
           c_2() = [0]
           c_3() = [0]
           c_4() = [0]
           c_5(x1) = [0] x1 + [0]
           c_6(x1) = [0] x1 + [0]
           c_7(x1) = [0] x1 + [0]
           and^#(x1, x2) = [0] x1 + [0] x2 + [0]
           c_8(x1) = [0] x1 + [0]
           isNePal^#(x1) = [0] x1 + [0]
           c_9(x1) = [0] x1 + [0]
           c_10(x1) = [0] x1 + [0]
           c_11(x1) = [0] x1 + [0]
           c_12(x1) = [0] x1 + [0]
           proper^#(x1) = [0] x1 + [0]
           c_13(x1) = [0] x1 + [0]
           c_14() = [0]
           c_15(x1) = [0] x1 + [0]
           c_16() = [0]
           c_17(x1) = [0] x1 + [0]
           c_18(x1) = [0] x1 + [0]
           c_19(x1) = [0] x1 + [0]
           c_20(x1) = [0] x1 + [0]
           top^#(x1) = [0] x1 + [0]
           c_21(x1) = [0] x1 + [0]
           c_22(x1) = [0] x1 + [0]
        
        We have applied the subprocessor on the resulting DP-problem:
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost DP runtime-complexity with respect to
            Strict Rules: {active^#(and(tt(), X)) -> c_3()}
            Weak Rules: {}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {active^#(and(tt(), X)) -> c_3()}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {active^#(and(tt(), X)) -> c_3()}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  __(x1, x2) = [0] x1 + [0] x2 + [0]
                  mark(x1) = [0] x1 + [0]
                  nil() = [0]
                  and(x1, x2) = [1] x1 + [1] x2 + [0]
                  tt() = [0]
                  isNePal(x1) = [0] x1 + [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [0] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4() = [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_8(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  proper^#(x1) = [0] x1 + [0]
                  c_13(x1) = [0] x1 + [0]
                  c_14() = [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16() = [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'Empty TRS'
            -----------
            Answer:           YES(?,O(1))
            Input Problem:    innermost DP runtime-complexity with respect to
              Strict Rules: {}
              Weak Rules: {active^#(and(tt(), X)) -> c_3()}
            
            Details:         
              The given problem does not contain any strict rules
      
   22)
      {proper^#(tt()) -> c_16()}
      
      The usable rules for this path are empty.
      
        We have oriented the usable rules with the following strongly linear interpretation:
          Interpretation Functions:
           active(x1) = [0] x1 + [0]
           __(x1, x2) = [0] x1 + [0] x2 + [0]
           mark(x1) = [0] x1 + [0]
           nil() = [0]
           and(x1, x2) = [0] x1 + [0] x2 + [0]
           tt() = [0]
           isNePal(x1) = [0] x1 + [0]
           proper(x1) = [0] x1 + [0]
           ok(x1) = [0] x1 + [0]
           top(x1) = [0] x1 + [0]
           active^#(x1) = [0] x1 + [0]
           c_0(x1) = [0] x1 + [0]
           __^#(x1, x2) = [0] x1 + [0] x2 + [0]
           c_1() = [0]
           c_2() = [0]
           c_3() = [0]
           c_4() = [0]
           c_5(x1) = [0] x1 + [0]
           c_6(x1) = [0] x1 + [0]
           c_7(x1) = [0] x1 + [0]
           and^#(x1, x2) = [0] x1 + [0] x2 + [0]
           c_8(x1) = [0] x1 + [0]
           isNePal^#(x1) = [0] x1 + [0]
           c_9(x1) = [0] x1 + [0]
           c_10(x1) = [0] x1 + [0]
           c_11(x1) = [0] x1 + [0]
           c_12(x1) = [0] x1 + [0]
           proper^#(x1) = [0] x1 + [0]
           c_13(x1) = [0] x1 + [0]
           c_14() = [0]
           c_15(x1) = [0] x1 + [0]
           c_16() = [0]
           c_17(x1) = [0] x1 + [0]
           c_18(x1) = [0] x1 + [0]
           c_19(x1) = [0] x1 + [0]
           c_20(x1) = [0] x1 + [0]
           top^#(x1) = [0] x1 + [0]
           c_21(x1) = [0] x1 + [0]
           c_22(x1) = [0] x1 + [0]
        
        We have applied the subprocessor on the resulting DP-problem:
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost DP runtime-complexity with respect to
            Strict Rules: {proper^#(tt()) -> c_16()}
            Weak Rules: {}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {proper^#(tt()) -> c_16()}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {proper^#(tt()) -> c_16()}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  __(x1, x2) = [0] x1 + [0] x2 + [0]
                  mark(x1) = [0] x1 + [0]
                  nil() = [0]
                  and(x1, x2) = [0] x1 + [0] x2 + [0]
                  tt() = [0]
                  isNePal(x1) = [0] x1 + [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [0] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4() = [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_8(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [1]
                  c_13(x1) = [0] x1 + [0]
                  c_14() = [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16() = [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'Empty TRS'
            -----------
            Answer:           YES(?,O(1))
            Input Problem:    innermost DP runtime-complexity with respect to
              Strict Rules: {}
              Weak Rules: {proper^#(tt()) -> c_16()}
            
            Details:         
              The given problem does not contain any strict rules
      
   23)
      {proper^#(nil()) -> c_14()}
      
      The usable rules for this path are empty.
      
        We have oriented the usable rules with the following strongly linear interpretation:
          Interpretation Functions:
           active(x1) = [0] x1 + [0]
           __(x1, x2) = [0] x1 + [0] x2 + [0]
           mark(x1) = [0] x1 + [0]
           nil() = [0]
           and(x1, x2) = [0] x1 + [0] x2 + [0]
           tt() = [0]
           isNePal(x1) = [0] x1 + [0]
           proper(x1) = [0] x1 + [0]
           ok(x1) = [0] x1 + [0]
           top(x1) = [0] x1 + [0]
           active^#(x1) = [0] x1 + [0]
           c_0(x1) = [0] x1 + [0]
           __^#(x1, x2) = [0] x1 + [0] x2 + [0]
           c_1() = [0]
           c_2() = [0]
           c_3() = [0]
           c_4() = [0]
           c_5(x1) = [0] x1 + [0]
           c_6(x1) = [0] x1 + [0]
           c_7(x1) = [0] x1 + [0]
           and^#(x1, x2) = [0] x1 + [0] x2 + [0]
           c_8(x1) = [0] x1 + [0]
           isNePal^#(x1) = [0] x1 + [0]
           c_9(x1) = [0] x1 + [0]
           c_10(x1) = [0] x1 + [0]
           c_11(x1) = [0] x1 + [0]
           c_12(x1) = [0] x1 + [0]
           proper^#(x1) = [0] x1 + [0]
           c_13(x1) = [0] x1 + [0]
           c_14() = [0]
           c_15(x1) = [0] x1 + [0]
           c_16() = [0]
           c_17(x1) = [0] x1 + [0]
           c_18(x1) = [0] x1 + [0]
           c_19(x1) = [0] x1 + [0]
           c_20(x1) = [0] x1 + [0]
           top^#(x1) = [0] x1 + [0]
           c_21(x1) = [0] x1 + [0]
           c_22(x1) = [0] x1 + [0]
        
        We have applied the subprocessor on the resulting DP-problem:
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost DP runtime-complexity with respect to
            Strict Rules: {proper^#(nil()) -> c_14()}
            Weak Rules: {}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {proper^#(nil()) -> c_14()}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {proper^#(nil()) -> c_14()}
              
              Details:
                 Interpretation Functions:
                  active(x1) = [0] x1 + [0]
                  __(x1, x2) = [0] x1 + [0] x2 + [0]
                  mark(x1) = [0] x1 + [0]
                  nil() = [0]
                  and(x1, x2) = [0] x1 + [0] x2 + [0]
                  tt() = [0]
                  isNePal(x1) = [0] x1 + [0]
                  proper(x1) = [0] x1 + [0]
                  ok(x1) = [0] x1 + [0]
                  top(x1) = [0] x1 + [0]
                  active^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  __^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_1() = [0]
                  c_2() = [0]
                  c_3() = [0]
                  c_4() = [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  and^#(x1, x2) = [0] x1 + [0] x2 + [0]
                  c_8(x1) = [0] x1 + [0]
                  isNePal^#(x1) = [0] x1 + [0]
                  c_9(x1) = [0] x1 + [0]
                  c_10(x1) = [0] x1 + [0]
                  c_11(x1) = [0] x1 + [0]
                  c_12(x1) = [0] x1 + [0]
                  proper^#(x1) = [1] x1 + [1]
                  c_13(x1) = [0] x1 + [0]
                  c_14() = [0]
                  c_15(x1) = [0] x1 + [0]
                  c_16() = [0]
                  c_17(x1) = [0] x1 + [0]
                  c_18(x1) = [0] x1 + [0]
                  c_19(x1) = [0] x1 + [0]
                  c_20(x1) = [0] x1 + [0]
                  top^#(x1) = [0] x1 + [0]
                  c_21(x1) = [0] x1 + [0]
                  c_22(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'Empty TRS'
            -----------
            Answer:           YES(?,O(1))
            Input Problem:    innermost DP runtime-complexity with respect to
              Strict Rules: {}
              Weak Rules: {proper^#(nil()) -> c_14()}
            
            Details:         
              The given problem does not contain any strict rules