'Weak Dependency Graph [60.0]' ------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z))) , active(__(X, nil())) -> mark(X) , active(__(nil(), X)) -> mark(X) , active(and(tt(), X)) -> mark(X) , active(isNePal(__(I, __(P, I)))) -> mark(tt()) , active(__(X1, X2)) -> __(active(X1), X2) , active(__(X1, X2)) -> __(X1, active(X2)) , active(and(X1, X2)) -> and(active(X1), X2) , active(isNePal(X)) -> isNePal(active(X)) , __(mark(X1), X2) -> mark(__(X1, X2)) , __(X1, mark(X2)) -> mark(__(X1, X2)) , and(mark(X1), X2) -> mark(and(X1, X2)) , isNePal(mark(X)) -> mark(isNePal(X)) , proper(__(X1, X2)) -> __(proper(X1), proper(X2)) , proper(nil()) -> ok(nil()) , proper(and(X1, X2)) -> and(proper(X1), proper(X2)) , proper(tt()) -> ok(tt()) , proper(isNePal(X)) -> isNePal(proper(X)) , __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2)) , isNePal(ok(X)) -> ok(isNePal(X)) , top(mark(X)) -> top(proper(X)) , top(ok(X)) -> top(active(X))} Details: We have computed the following set of weak (innermost) dependency pairs: { active^#(__(__(X, Y), Z)) -> c_0(__^#(X, __(Y, Z))) , active^#(__(X, nil())) -> c_1() , active^#(__(nil(), X)) -> c_2() , active^#(and(tt(), X)) -> c_3() , active^#(isNePal(__(I, __(P, I)))) -> c_4() , active^#(__(X1, X2)) -> c_5(__^#(active(X1), X2)) , active^#(__(X1, X2)) -> c_6(__^#(X1, active(X2))) , active^#(and(X1, X2)) -> c_7(and^#(active(X1), X2)) , active^#(isNePal(X)) -> c_8(isNePal^#(active(X))) , __^#(mark(X1), X2) -> c_9(__^#(X1, X2)) , __^#(X1, mark(X2)) -> c_10(__^#(X1, X2)) , and^#(mark(X1), X2) -> c_11(and^#(X1, X2)) , isNePal^#(mark(X)) -> c_12(isNePal^#(X)) , proper^#(__(X1, X2)) -> c_13(__^#(proper(X1), proper(X2))) , proper^#(nil()) -> c_14() , proper^#(and(X1, X2)) -> c_15(and^#(proper(X1), proper(X2))) , proper^#(tt()) -> c_16() , proper^#(isNePal(X)) -> c_17(isNePal^#(proper(X))) , __^#(ok(X1), ok(X2)) -> c_18(__^#(X1, X2)) , and^#(ok(X1), ok(X2)) -> c_19(and^#(X1, X2)) , isNePal^#(ok(X)) -> c_20(isNePal^#(X)) , top^#(mark(X)) -> c_21(top^#(proper(X))) , top^#(ok(X)) -> c_22(top^#(active(X)))} The usable rules are: { active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z))) , active(__(X, nil())) -> mark(X) , active(__(nil(), X)) -> mark(X) , active(and(tt(), X)) -> mark(X) , active(isNePal(__(I, __(P, I)))) -> mark(tt()) , active(__(X1, X2)) -> __(active(X1), X2) , active(__(X1, X2)) -> __(X1, active(X2)) , active(and(X1, X2)) -> and(active(X1), X2) , active(isNePal(X)) -> isNePal(active(X)) , __(mark(X1), X2) -> mark(__(X1, X2)) , __(X1, mark(X2)) -> mark(__(X1, X2)) , proper(__(X1, X2)) -> __(proper(X1), proper(X2)) , proper(nil()) -> ok(nil()) , proper(and(X1, X2)) -> and(proper(X1), proper(X2)) , proper(tt()) -> ok(tt()) , proper(isNePal(X)) -> isNePal(proper(X)) , __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(mark(X1), X2) -> mark(and(X1, X2)) , isNePal(mark(X)) -> mark(isNePal(X)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2)) , isNePal(ok(X)) -> ok(isNePal(X))} The estimated dependency graph contains the following edges: {active^#(__(__(X, Y), Z)) -> c_0(__^#(X, __(Y, Z)))} ==> {__^#(ok(X1), ok(X2)) -> c_18(__^#(X1, X2))} {active^#(__(__(X, Y), Z)) -> c_0(__^#(X, __(Y, Z)))} ==> {__^#(X1, mark(X2)) -> c_10(__^#(X1, X2))} {active^#(__(__(X, Y), Z)) -> c_0(__^#(X, __(Y, Z)))} ==> {__^#(mark(X1), X2) -> c_9(__^#(X1, X2))} {active^#(__(X1, X2)) -> c_5(__^#(active(X1), X2))} ==> {__^#(ok(X1), ok(X2)) -> c_18(__^#(X1, X2))} {active^#(__(X1, X2)) -> c_5(__^#(active(X1), X2))} ==> {__^#(X1, mark(X2)) -> c_10(__^#(X1, X2))} {active^#(__(X1, X2)) -> c_5(__^#(active(X1), X2))} ==> {__^#(mark(X1), X2) -> c_9(__^#(X1, X2))} {active^#(__(X1, X2)) -> c_6(__^#(X1, active(X2)))} ==> {__^#(ok(X1), ok(X2)) -> c_18(__^#(X1, X2))} {active^#(__(X1, X2)) -> c_6(__^#(X1, active(X2)))} ==> {__^#(X1, mark(X2)) -> c_10(__^#(X1, X2))} {active^#(__(X1, X2)) -> c_6(__^#(X1, active(X2)))} ==> {__^#(mark(X1), X2) -> c_9(__^#(X1, X2))} {active^#(and(X1, X2)) -> c_7(and^#(active(X1), X2))} ==> {and^#(ok(X1), ok(X2)) -> c_19(and^#(X1, X2))} {active^#(and(X1, X2)) -> c_7(and^#(active(X1), X2))} ==> {and^#(mark(X1), X2) -> c_11(and^#(X1, X2))} {active^#(isNePal(X)) -> c_8(isNePal^#(active(X)))} ==> {isNePal^#(ok(X)) -> c_20(isNePal^#(X))} {active^#(isNePal(X)) -> c_8(isNePal^#(active(X)))} ==> {isNePal^#(mark(X)) -> c_12(isNePal^#(X))} {__^#(mark(X1), X2) -> c_9(__^#(X1, X2))} ==> {__^#(ok(X1), ok(X2)) -> c_18(__^#(X1, X2))} {__^#(mark(X1), X2) -> c_9(__^#(X1, X2))} ==> {__^#(X1, mark(X2)) -> c_10(__^#(X1, X2))} {__^#(mark(X1), X2) -> c_9(__^#(X1, X2))} ==> {__^#(mark(X1), X2) -> c_9(__^#(X1, X2))} {__^#(X1, mark(X2)) -> c_10(__^#(X1, X2))} ==> {__^#(ok(X1), ok(X2)) -> c_18(__^#(X1, X2))} {__^#(X1, mark(X2)) -> c_10(__^#(X1, X2))} ==> {__^#(X1, mark(X2)) -> c_10(__^#(X1, X2))} {__^#(X1, mark(X2)) -> c_10(__^#(X1, X2))} ==> {__^#(mark(X1), X2) -> c_9(__^#(X1, X2))} {and^#(mark(X1), X2) -> c_11(and^#(X1, X2))} ==> {and^#(ok(X1), ok(X2)) -> c_19(and^#(X1, X2))} {and^#(mark(X1), X2) -> c_11(and^#(X1, X2))} ==> {and^#(mark(X1), X2) -> c_11(and^#(X1, X2))} {isNePal^#(mark(X)) -> c_12(isNePal^#(X))} ==> {isNePal^#(ok(X)) -> c_20(isNePal^#(X))} {isNePal^#(mark(X)) -> c_12(isNePal^#(X))} ==> {isNePal^#(mark(X)) -> c_12(isNePal^#(X))} {proper^#(__(X1, X2)) -> c_13(__^#(proper(X1), proper(X2)))} ==> {__^#(ok(X1), ok(X2)) -> c_18(__^#(X1, X2))} {proper^#(__(X1, X2)) -> c_13(__^#(proper(X1), proper(X2)))} ==> {__^#(X1, mark(X2)) -> c_10(__^#(X1, X2))} {proper^#(__(X1, X2)) -> c_13(__^#(proper(X1), proper(X2)))} ==> {__^#(mark(X1), X2) -> c_9(__^#(X1, X2))} {proper^#(and(X1, X2)) -> c_15(and^#(proper(X1), proper(X2)))} ==> {and^#(ok(X1), ok(X2)) -> c_19(and^#(X1, X2))} {proper^#(and(X1, X2)) -> c_15(and^#(proper(X1), proper(X2)))} ==> {and^#(mark(X1), X2) -> c_11(and^#(X1, X2))} {proper^#(isNePal(X)) -> c_17(isNePal^#(proper(X)))} ==> {isNePal^#(ok(X)) -> c_20(isNePal^#(X))} {proper^#(isNePal(X)) -> c_17(isNePal^#(proper(X)))} ==> {isNePal^#(mark(X)) -> c_12(isNePal^#(X))} {__^#(ok(X1), ok(X2)) -> c_18(__^#(X1, X2))} ==> {__^#(ok(X1), ok(X2)) -> c_18(__^#(X1, X2))} {__^#(ok(X1), ok(X2)) -> c_18(__^#(X1, X2))} ==> {__^#(X1, mark(X2)) -> c_10(__^#(X1, X2))} {__^#(ok(X1), ok(X2)) -> c_18(__^#(X1, X2))} ==> {__^#(mark(X1), X2) -> c_9(__^#(X1, X2))} {and^#(ok(X1), ok(X2)) -> c_19(and^#(X1, X2))} ==> {and^#(ok(X1), ok(X2)) -> c_19(and^#(X1, X2))} {and^#(ok(X1), ok(X2)) -> c_19(and^#(X1, X2))} ==> {and^#(mark(X1), X2) -> c_11(and^#(X1, X2))} {isNePal^#(ok(X)) -> c_20(isNePal^#(X))} ==> {isNePal^#(ok(X)) -> c_20(isNePal^#(X))} {isNePal^#(ok(X)) -> c_20(isNePal^#(X))} ==> {isNePal^#(mark(X)) -> c_12(isNePal^#(X))} {top^#(mark(X)) -> c_21(top^#(proper(X)))} ==> {top^#(ok(X)) -> c_22(top^#(active(X)))} {top^#(mark(X)) -> c_21(top^#(proper(X)))} ==> {top^#(mark(X)) -> c_21(top^#(proper(X)))} {top^#(ok(X)) -> c_22(top^#(active(X)))} ==> {top^#(ok(X)) -> c_22(top^#(active(X)))} {top^#(ok(X)) -> c_22(top^#(active(X)))} ==> {top^#(mark(X)) -> c_21(top^#(proper(X)))} We consider the following path(s): 1) { top^#(mark(X)) -> c_21(top^#(proper(X))) , top^#(ok(X)) -> c_22(top^#(active(X)))} The usable rules for this path are the following: { active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z))) , active(__(X, nil())) -> mark(X) , active(__(nil(), X)) -> mark(X) , active(and(tt(), X)) -> mark(X) , active(isNePal(__(I, __(P, I)))) -> mark(tt()) , active(__(X1, X2)) -> __(active(X1), X2) , active(__(X1, X2)) -> __(X1, active(X2)) , active(and(X1, X2)) -> and(active(X1), X2) , active(isNePal(X)) -> isNePal(active(X)) , proper(__(X1, X2)) -> __(proper(X1), proper(X2)) , proper(nil()) -> ok(nil()) , proper(and(X1, X2)) -> and(proper(X1), proper(X2)) , proper(tt()) -> ok(tt()) , proper(isNePal(X)) -> isNePal(proper(X)) , __(mark(X1), X2) -> mark(__(X1, X2)) , __(X1, mark(X2)) -> mark(__(X1, X2)) , __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(mark(X1), X2) -> mark(and(X1, X2)) , isNePal(mark(X)) -> mark(isNePal(X)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2)) , isNePal(ok(X)) -> ok(isNePal(X))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z))) , active(__(X, nil())) -> mark(X) , active(__(nil(), X)) -> mark(X) , active(and(tt(), X)) -> mark(X) , active(isNePal(__(I, __(P, I)))) -> mark(tt()) , active(__(X1, X2)) -> __(active(X1), X2) , active(__(X1, X2)) -> __(X1, active(X2)) , active(and(X1, X2)) -> and(active(X1), X2) , active(isNePal(X)) -> isNePal(active(X)) , proper(__(X1, X2)) -> __(proper(X1), proper(X2)) , proper(nil()) -> ok(nil()) , proper(and(X1, X2)) -> and(proper(X1), proper(X2)) , proper(tt()) -> ok(tt()) , proper(isNePal(X)) -> isNePal(proper(X)) , __(mark(X1), X2) -> mark(__(X1, X2)) , __(X1, mark(X2)) -> mark(__(X1, X2)) , __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(mark(X1), X2) -> mark(and(X1, X2)) , isNePal(mark(X)) -> mark(isNePal(X)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2)) , isNePal(ok(X)) -> ok(isNePal(X)) , top^#(mark(X)) -> c_21(top^#(proper(X))) , top^#(ok(X)) -> c_22(top^#(active(X)))} Details: We apply the weight gap principle, strictly orienting the rules { __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2)) , top^#(ok(X)) -> c_22(top^#(active(X)))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2)) , top^#(ok(X)) -> c_22(top^#(active(X)))} Details: Interpretation Functions: active(x1) = [1] x1 + [1] __(x1, x2) = [1] x1 + [1] x2 + [0] mark(x1) = [1] x1 + [1] nil() = [0] and(x1, x2) = [1] x1 + [1] x2 + [0] tt() = [0] isNePal(x1) = [1] x1 + [0] proper(x1) = [1] x1 + [1] ok(x1) = [1] x1 + [5] top(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] __^#(x1, x2) = [0] x1 + [0] x2 + [0] c_1() = [0] c_2() = [0] c_3() = [0] c_4() = [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] and^#(x1, x2) = [0] x1 + [0] x2 + [0] c_8(x1) = [0] x1 + [0] isNePal^#(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14() = [0] c_15(x1) = [0] x1 + [0] c_16() = [0] c_17(x1) = [0] x1 + [0] c_18(x1) = [0] x1 + [0] c_19(x1) = [0] x1 + [0] c_20(x1) = [0] x1 + [0] top^#(x1) = [1] x1 + [0] c_21(x1) = [1] x1 + [0] c_22(x1) = [1] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {active(isNePal(__(I, __(P, I)))) -> mark(tt())} and weakly orienting the rules { __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2)) , top^#(ok(X)) -> c_22(top^#(active(X)))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {active(isNePal(__(I, __(P, I)))) -> mark(tt())} Details: Interpretation Functions: active(x1) = [1] x1 + [1] __(x1, x2) = [1] x1 + [1] x2 + [0] mark(x1) = [1] x1 + [1] nil() = [0] and(x1, x2) = [1] x1 + [1] x2 + [0] tt() = [0] isNePal(x1) = [1] x1 + [2] proper(x1) = [1] x1 + [1] ok(x1) = [1] x1 + [2] top(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] __^#(x1, x2) = [0] x1 + [0] x2 + [0] c_1() = [0] c_2() = [0] c_3() = [0] c_4() = [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] and^#(x1, x2) = [0] x1 + [0] x2 + [0] c_8(x1) = [0] x1 + [0] isNePal^#(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14() = [0] c_15(x1) = [0] x1 + [0] c_16() = [0] c_17(x1) = [0] x1 + [0] c_18(x1) = [0] x1 + [0] c_19(x1) = [0] x1 + [0] c_20(x1) = [0] x1 + [0] top^#(x1) = [1] x1 + [7] c_21(x1) = [1] x1 + [0] c_22(x1) = [1] x1 + [1] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {active(and(tt(), X)) -> mark(X)} and weakly orienting the rules { active(isNePal(__(I, __(P, I)))) -> mark(tt()) , __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2)) , top^#(ok(X)) -> c_22(top^#(active(X)))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {active(and(tt(), X)) -> mark(X)} Details: Interpretation Functions: active(x1) = [1] x1 + [1] __(x1, x2) = [1] x1 + [1] x2 + [0] mark(x1) = [1] x1 + [1] nil() = [0] and(x1, x2) = [1] x1 + [1] x2 + [4] tt() = [0] isNePal(x1) = [1] x1 + [0] proper(x1) = [1] x1 + [1] ok(x1) = [1] x1 + [8] top(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] __^#(x1, x2) = [0] x1 + [0] x2 + [0] c_1() = [0] c_2() = [0] c_3() = [0] c_4() = [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] and^#(x1, x2) = [0] x1 + [0] x2 + [0] c_8(x1) = [0] x1 + [0] isNePal^#(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14() = [0] c_15(x1) = [0] x1 + [0] c_16() = [0] c_17(x1) = [0] x1 + [0] c_18(x1) = [0] x1 + [0] c_19(x1) = [0] x1 + [0] c_20(x1) = [0] x1 + [0] top^#(x1) = [1] x1 + [15] c_21(x1) = [1] x1 + [4] c_22(x1) = [1] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { proper(nil()) -> ok(nil()) , proper(tt()) -> ok(tt())} and weakly orienting the rules { active(and(tt(), X)) -> mark(X) , active(isNePal(__(I, __(P, I)))) -> mark(tt()) , __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2)) , top^#(ok(X)) -> c_22(top^#(active(X)))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { proper(nil()) -> ok(nil()) , proper(tt()) -> ok(tt())} Details: Interpretation Functions: active(x1) = [1] x1 + [1] __(x1, x2) = [1] x1 + [1] x2 + [0] mark(x1) = [1] x1 + [1] nil() = [0] and(x1, x2) = [1] x1 + [1] x2 + [0] tt() = [0] isNePal(x1) = [1] x1 + [4] proper(x1) = [1] x1 + [8] ok(x1) = [1] x1 + [1] top(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] __^#(x1, x2) = [0] x1 + [0] x2 + [0] c_1() = [0] c_2() = [0] c_3() = [0] c_4() = [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] and^#(x1, x2) = [0] x1 + [0] x2 + [0] c_8(x1) = [0] x1 + [0] isNePal^#(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14() = [0] c_15(x1) = [0] x1 + [0] c_16() = [0] c_17(x1) = [0] x1 + [0] c_18(x1) = [0] x1 + [0] c_19(x1) = [0] x1 + [0] c_20(x1) = [0] x1 + [0] top^#(x1) = [1] x1 + [0] c_21(x1) = [1] x1 + [8] c_22(x1) = [1] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { active(__(X, nil())) -> mark(X) , active(__(nil(), X)) -> mark(X)} and weakly orienting the rules { proper(nil()) -> ok(nil()) , proper(tt()) -> ok(tt()) , active(and(tt(), X)) -> mark(X) , active(isNePal(__(I, __(P, I)))) -> mark(tt()) , __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2)) , top^#(ok(X)) -> c_22(top^#(active(X)))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { active(__(X, nil())) -> mark(X) , active(__(nil(), X)) -> mark(X)} Details: Interpretation Functions: active(x1) = [1] x1 + [1] __(x1, x2) = [1] x1 + [1] x2 + [0] mark(x1) = [1] x1 + [3] nil() = [3] and(x1, x2) = [1] x1 + [1] x2 + [8] tt() = [6] isNePal(x1) = [1] x1 + [9] proper(x1) = [1] x1 + [8] ok(x1) = [1] x1 + [8] top(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] __^#(x1, x2) = [0] x1 + [0] x2 + [0] c_1() = [0] c_2() = [0] c_3() = [0] c_4() = [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] and^#(x1, x2) = [0] x1 + [0] x2 + [0] c_8(x1) = [0] x1 + [0] isNePal^#(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14() = [0] c_15(x1) = [0] x1 + [0] c_16() = [0] c_17(x1) = [0] x1 + [0] c_18(x1) = [0] x1 + [0] c_19(x1) = [0] x1 + [0] c_20(x1) = [0] x1 + [0] top^#(x1) = [1] x1 + [8] c_21(x1) = [1] x1 + [1] c_22(x1) = [1] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {top^#(mark(X)) -> c_21(top^#(proper(X)))} and weakly orienting the rules { active(__(X, nil())) -> mark(X) , active(__(nil(), X)) -> mark(X) , proper(nil()) -> ok(nil()) , proper(tt()) -> ok(tt()) , active(and(tt(), X)) -> mark(X) , active(isNePal(__(I, __(P, I)))) -> mark(tt()) , __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2)) , top^#(ok(X)) -> c_22(top^#(active(X)))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {top^#(mark(X)) -> c_21(top^#(proper(X)))} Details: Interpretation Functions: active(x1) = [1] x1 + [0] __(x1, x2) = [1] x1 + [1] x2 + [0] mark(x1) = [1] x1 + [4] nil() = [4] and(x1, x2) = [1] x1 + [1] x2 + [0] tt() = [8] isNePal(x1) = [1] x1 + [12] proper(x1) = [1] x1 + [0] ok(x1) = [1] x1 + [0] top(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] __^#(x1, x2) = [0] x1 + [0] x2 + [0] c_1() = [0] c_2() = [0] c_3() = [0] c_4() = [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] and^#(x1, x2) = [0] x1 + [0] x2 + [0] c_8(x1) = [0] x1 + [0] isNePal^#(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14() = [0] c_15(x1) = [0] x1 + [0] c_16() = [0] c_17(x1) = [0] x1 + [0] c_18(x1) = [0] x1 + [0] c_19(x1) = [0] x1 + [0] c_20(x1) = [0] x1 + [0] top^#(x1) = [1] x1 + [0] c_21(x1) = [1] x1 + [0] c_22(x1) = [1] x1 + [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z))) , active(__(X1, X2)) -> __(active(X1), X2) , active(__(X1, X2)) -> __(X1, active(X2)) , active(and(X1, X2)) -> and(active(X1), X2) , active(isNePal(X)) -> isNePal(active(X)) , proper(__(X1, X2)) -> __(proper(X1), proper(X2)) , proper(and(X1, X2)) -> and(proper(X1), proper(X2)) , proper(isNePal(X)) -> isNePal(proper(X)) , __(mark(X1), X2) -> mark(__(X1, X2)) , __(X1, mark(X2)) -> mark(__(X1, X2)) , and(mark(X1), X2) -> mark(and(X1, X2)) , isNePal(mark(X)) -> mark(isNePal(X)) , isNePal(ok(X)) -> ok(isNePal(X))} Weak Rules: { top^#(mark(X)) -> c_21(top^#(proper(X))) , active(__(X, nil())) -> mark(X) , active(__(nil(), X)) -> mark(X) , proper(nil()) -> ok(nil()) , proper(tt()) -> ok(tt()) , active(and(tt(), X)) -> mark(X) , active(isNePal(__(I, __(P, I)))) -> mark(tt()) , __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2)) , top^#(ok(X)) -> c_22(top^#(active(X)))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z))) , active(__(X1, X2)) -> __(active(X1), X2) , active(__(X1, X2)) -> __(X1, active(X2)) , active(and(X1, X2)) -> and(active(X1), X2) , active(isNePal(X)) -> isNePal(active(X)) , proper(__(X1, X2)) -> __(proper(X1), proper(X2)) , proper(and(X1, X2)) -> and(proper(X1), proper(X2)) , proper(isNePal(X)) -> isNePal(proper(X)) , __(mark(X1), X2) -> mark(__(X1, X2)) , __(X1, mark(X2)) -> mark(__(X1, X2)) , and(mark(X1), X2) -> mark(and(X1, X2)) , isNePal(mark(X)) -> mark(isNePal(X)) , isNePal(ok(X)) -> ok(isNePal(X))} Weak Rules: { top^#(mark(X)) -> c_21(top^#(proper(X))) , active(__(X, nil())) -> mark(X) , active(__(nil(), X)) -> mark(X) , proper(nil()) -> ok(nil()) , proper(tt()) -> ok(tt()) , active(and(tt(), X)) -> mark(X) , active(isNePal(__(I, __(P, I)))) -> mark(tt()) , __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2)) , top^#(ok(X)) -> c_22(top^#(active(X)))} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { active_0(2) -> 6 , mark_0(2) -> 2 , nil_0() -> 2 , tt_0() -> 2 , proper_0(2) -> 4 , ok_0(2) -> 2 , ok_0(2) -> 4 , top^#_0(2) -> 1 , top^#_0(4) -> 3 , top^#_0(6) -> 5 , c_21_0(3) -> 1 , c_22_0(5) -> 1 , c_22_0(5) -> 3} 2) { active^#(__(X1, X2)) -> c_6(__^#(X1, active(X2))) , __^#(ok(X1), ok(X2)) -> c_18(__^#(X1, X2)) , __^#(X1, mark(X2)) -> c_10(__^#(X1, X2)) , __^#(mark(X1), X2) -> c_9(__^#(X1, X2))} The usable rules for this path are the following: { active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z))) , active(__(X, nil())) -> mark(X) , active(__(nil(), X)) -> mark(X) , active(and(tt(), X)) -> mark(X) , active(isNePal(__(I, __(P, I)))) -> mark(tt()) , active(__(X1, X2)) -> __(active(X1), X2) , active(__(X1, X2)) -> __(X1, active(X2)) , active(and(X1, X2)) -> and(active(X1), X2) , active(isNePal(X)) -> isNePal(active(X)) , __(mark(X1), X2) -> mark(__(X1, X2)) , __(X1, mark(X2)) -> mark(__(X1, X2)) , __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(mark(X1), X2) -> mark(and(X1, X2)) , isNePal(mark(X)) -> mark(isNePal(X)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2)) , isNePal(ok(X)) -> ok(isNePal(X))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z))) , active(__(X, nil())) -> mark(X) , active(__(nil(), X)) -> mark(X) , active(and(tt(), X)) -> mark(X) , active(isNePal(__(I, __(P, I)))) -> mark(tt()) , active(__(X1, X2)) -> __(active(X1), X2) , active(__(X1, X2)) -> __(X1, active(X2)) , active(and(X1, X2)) -> and(active(X1), X2) , active(isNePal(X)) -> isNePal(active(X)) , __(mark(X1), X2) -> mark(__(X1, X2)) , __(X1, mark(X2)) -> mark(__(X1, X2)) , __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(mark(X1), X2) -> mark(and(X1, X2)) , isNePal(mark(X)) -> mark(isNePal(X)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2)) , isNePal(ok(X)) -> ok(isNePal(X)) , active^#(__(X1, X2)) -> c_6(__^#(X1, active(X2))) , __^#(ok(X1), ok(X2)) -> c_18(__^#(X1, X2)) , __^#(X1, mark(X2)) -> c_10(__^#(X1, X2)) , __^#(mark(X1), X2) -> c_9(__^#(X1, X2))} Details: We apply the weight gap principle, strictly orienting the rules { active(and(tt(), X)) -> mark(X) , __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2)) , __^#(ok(X1), ok(X2)) -> c_18(__^#(X1, X2)) , __^#(X1, mark(X2)) -> c_10(__^#(X1, X2)) , __^#(mark(X1), X2) -> c_9(__^#(X1, X2))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { active(and(tt(), X)) -> mark(X) , __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2)) , __^#(ok(X1), ok(X2)) -> c_18(__^#(X1, X2)) , __^#(X1, mark(X2)) -> c_10(__^#(X1, X2)) , __^#(mark(X1), X2) -> c_9(__^#(X1, X2))} Details: Interpretation Functions: active(x1) = [1] x1 + [1] __(x1, x2) = [1] x1 + [1] x2 + [0] mark(x1) = [1] x1 + [1] nil() = [0] and(x1, x2) = [1] x1 + [1] x2 + [3] tt() = [0] isNePal(x1) = [1] x1 + [0] proper(x1) = [0] x1 + [0] ok(x1) = [1] x1 + [8] top(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [1] c_0(x1) = [0] x1 + [0] __^#(x1, x2) = [1] x1 + [1] x2 + [1] c_1() = [0] c_2() = [0] c_3() = [0] c_4() = [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [1] x1 + [1] c_7(x1) = [0] x1 + [0] and^#(x1, x2) = [0] x1 + [0] x2 + [0] c_8(x1) = [0] x1 + [0] isNePal^#(x1) = [0] x1 + [0] c_9(x1) = [1] x1 + [0] c_10(x1) = [1] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14() = [0] c_15(x1) = [0] x1 + [0] c_16() = [0] c_17(x1) = [0] x1 + [0] c_18(x1) = [1] x1 + [0] c_19(x1) = [0] x1 + [0] c_20(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_21(x1) = [0] x1 + [0] c_22(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {active^#(__(X1, X2)) -> c_6(__^#(X1, active(X2)))} and weakly orienting the rules { active(and(tt(), X)) -> mark(X) , __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2)) , __^#(ok(X1), ok(X2)) -> c_18(__^#(X1, X2)) , __^#(X1, mark(X2)) -> c_10(__^#(X1, X2)) , __^#(mark(X1), X2) -> c_9(__^#(X1, X2))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {active^#(__(X1, X2)) -> c_6(__^#(X1, active(X2)))} Details: Interpretation Functions: active(x1) = [1] x1 + [1] __(x1, x2) = [1] x1 + [1] x2 + [0] mark(x1) = [1] x1 + [1] nil() = [0] and(x1, x2) = [1] x1 + [1] x2 + [0] tt() = [0] isNePal(x1) = [1] x1 + [0] proper(x1) = [0] x1 + [0] ok(x1) = [1] x1 + [8] top(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [9] c_0(x1) = [0] x1 + [0] __^#(x1, x2) = [1] x1 + [1] x2 + [0] c_1() = [0] c_2() = [0] c_3() = [0] c_4() = [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [1] x1 + [0] c_7(x1) = [0] x1 + [0] and^#(x1, x2) = [0] x1 + [0] x2 + [0] c_8(x1) = [0] x1 + [0] isNePal^#(x1) = [0] x1 + [0] c_9(x1) = [1] x1 + [1] c_10(x1) = [1] x1 + [1] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14() = [0] c_15(x1) = [0] x1 + [0] c_16() = [0] c_17(x1) = [0] x1 + [0] c_18(x1) = [1] x1 + [1] c_19(x1) = [0] x1 + [0] c_20(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_21(x1) = [0] x1 + [0] c_22(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {active(isNePal(__(I, __(P, I)))) -> mark(tt())} and weakly orienting the rules { active^#(__(X1, X2)) -> c_6(__^#(X1, active(X2))) , active(and(tt(), X)) -> mark(X) , __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2)) , __^#(ok(X1), ok(X2)) -> c_18(__^#(X1, X2)) , __^#(X1, mark(X2)) -> c_10(__^#(X1, X2)) , __^#(mark(X1), X2) -> c_9(__^#(X1, X2))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {active(isNePal(__(I, __(P, I)))) -> mark(tt())} Details: Interpretation Functions: active(x1) = [1] x1 + [1] __(x1, x2) = [1] x1 + [1] x2 + [0] mark(x1) = [1] x1 + [1] nil() = [0] and(x1, x2) = [1] x1 + [1] x2 + [0] tt() = [0] isNePal(x1) = [1] x1 + [2] proper(x1) = [0] x1 + [0] ok(x1) = [1] x1 + [8] top(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [1] c_0(x1) = [0] x1 + [0] __^#(x1, x2) = [1] x1 + [1] x2 + [0] c_1() = [0] c_2() = [0] c_3() = [0] c_4() = [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [1] x1 + [0] c_7(x1) = [0] x1 + [0] and^#(x1, x2) = [0] x1 + [0] x2 + [0] c_8(x1) = [0] x1 + [0] isNePal^#(x1) = [0] x1 + [0] c_9(x1) = [1] x1 + [1] c_10(x1) = [1] x1 + [1] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14() = [0] c_15(x1) = [0] x1 + [0] c_16() = [0] c_17(x1) = [0] x1 + [0] c_18(x1) = [1] x1 + [1] c_19(x1) = [0] x1 + [0] c_20(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_21(x1) = [0] x1 + [0] c_22(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { active(__(X, nil())) -> mark(X) , active(__(nil(), X)) -> mark(X)} and weakly orienting the rules { active(isNePal(__(I, __(P, I)))) -> mark(tt()) , active^#(__(X1, X2)) -> c_6(__^#(X1, active(X2))) , active(and(tt(), X)) -> mark(X) , __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2)) , __^#(ok(X1), ok(X2)) -> c_18(__^#(X1, X2)) , __^#(X1, mark(X2)) -> c_10(__^#(X1, X2)) , __^#(mark(X1), X2) -> c_9(__^#(X1, X2))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { active(__(X, nil())) -> mark(X) , active(__(nil(), X)) -> mark(X)} Details: Interpretation Functions: active(x1) = [1] x1 + [0] __(x1, x2) = [1] x1 + [1] x2 + [9] mark(x1) = [1] x1 + [0] nil() = [8] and(x1, x2) = [1] x1 + [1] x2 + [0] tt() = [0] isNePal(x1) = [1] x1 + [0] proper(x1) = [0] x1 + [0] ok(x1) = [1] x1 + [0] top(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [0] c_0(x1) = [0] x1 + [0] __^#(x1, x2) = [1] x1 + [1] x2 + [0] c_1() = [0] c_2() = [0] c_3() = [0] c_4() = [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [1] x1 + [0] c_7(x1) = [0] x1 + [0] and^#(x1, x2) = [0] x1 + [0] x2 + [0] c_8(x1) = [0] x1 + [0] isNePal^#(x1) = [0] x1 + [0] c_9(x1) = [1] x1 + [0] c_10(x1) = [1] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14() = [0] c_15(x1) = [0] x1 + [0] c_16() = [0] c_17(x1) = [0] x1 + [0] c_18(x1) = [1] x1 + [0] c_19(x1) = [0] x1 + [0] c_20(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_21(x1) = [0] x1 + [0] c_22(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z)))} and weakly orienting the rules { active(__(X, nil())) -> mark(X) , active(__(nil(), X)) -> mark(X) , active(isNePal(__(I, __(P, I)))) -> mark(tt()) , active^#(__(X1, X2)) -> c_6(__^#(X1, active(X2))) , active(and(tt(), X)) -> mark(X) , __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2)) , __^#(ok(X1), ok(X2)) -> c_18(__^#(X1, X2)) , __^#(X1, mark(X2)) -> c_10(__^#(X1, X2)) , __^#(mark(X1), X2) -> c_9(__^#(X1, X2))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z)))} Details: Interpretation Functions: active(x1) = [1] x1 + [1] __(x1, x2) = [1] x1 + [1] x2 + [0] mark(x1) = [1] x1 + [0] nil() = [0] and(x1, x2) = [1] x1 + [1] x2 + [0] tt() = [0] isNePal(x1) = [1] x1 + [2] proper(x1) = [0] x1 + [0] ok(x1) = [1] x1 + [2] top(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [1] c_0(x1) = [0] x1 + [0] __^#(x1, x2) = [1] x1 + [1] x2 + [0] c_1() = [0] c_2() = [0] c_3() = [0] c_4() = [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [1] x1 + [0] c_7(x1) = [0] x1 + [0] and^#(x1, x2) = [0] x1 + [0] x2 + [0] c_8(x1) = [0] x1 + [0] isNePal^#(x1) = [0] x1 + [0] c_9(x1) = [1] x1 + [0] c_10(x1) = [1] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14() = [0] c_15(x1) = [0] x1 + [0] c_16() = [0] c_17(x1) = [0] x1 + [0] c_18(x1) = [1] x1 + [1] c_19(x1) = [0] x1 + [0] c_20(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_21(x1) = [0] x1 + [0] c_22(x1) = [0] x1 + [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { active(__(X1, X2)) -> __(active(X1), X2) , active(__(X1, X2)) -> __(X1, active(X2)) , active(and(X1, X2)) -> and(active(X1), X2) , active(isNePal(X)) -> isNePal(active(X)) , __(mark(X1), X2) -> mark(__(X1, X2)) , __(X1, mark(X2)) -> mark(__(X1, X2)) , and(mark(X1), X2) -> mark(and(X1, X2)) , isNePal(mark(X)) -> mark(isNePal(X)) , isNePal(ok(X)) -> ok(isNePal(X))} Weak Rules: { active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z))) , active(__(X, nil())) -> mark(X) , active(__(nil(), X)) -> mark(X) , active(isNePal(__(I, __(P, I)))) -> mark(tt()) , active^#(__(X1, X2)) -> c_6(__^#(X1, active(X2))) , active(and(tt(), X)) -> mark(X) , __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2)) , __^#(ok(X1), ok(X2)) -> c_18(__^#(X1, X2)) , __^#(X1, mark(X2)) -> c_10(__^#(X1, X2)) , __^#(mark(X1), X2) -> c_9(__^#(X1, X2))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { active(__(X1, X2)) -> __(active(X1), X2) , active(__(X1, X2)) -> __(X1, active(X2)) , active(and(X1, X2)) -> and(active(X1), X2) , active(isNePal(X)) -> isNePal(active(X)) , __(mark(X1), X2) -> mark(__(X1, X2)) , __(X1, mark(X2)) -> mark(__(X1, X2)) , and(mark(X1), X2) -> mark(and(X1, X2)) , isNePal(mark(X)) -> mark(isNePal(X)) , isNePal(ok(X)) -> ok(isNePal(X))} Weak Rules: { active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z))) , active(__(X, nil())) -> mark(X) , active(__(nil(), X)) -> mark(X) , active(isNePal(__(I, __(P, I)))) -> mark(tt()) , active^#(__(X1, X2)) -> c_6(__^#(X1, active(X2))) , active(and(tt(), X)) -> mark(X) , __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2)) , __^#(ok(X1), ok(X2)) -> c_18(__^#(X1, X2)) , __^#(X1, mark(X2)) -> c_10(__^#(X1, X2)) , __^#(mark(X1), X2) -> c_9(__^#(X1, X2))} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { mark_0(2) -> 2 , nil_0() -> 2 , tt_0() -> 2 , ok_0(2) -> 2 , active^#_0(2) -> 1 , __^#_0(2, 2) -> 1 , c_9_0(1) -> 1 , c_10_0(1) -> 1 , c_18_0(1) -> 1} 3) { active^#(__(X1, X2)) -> c_5(__^#(active(X1), X2)) , __^#(ok(X1), ok(X2)) -> c_18(__^#(X1, X2)) , __^#(X1, mark(X2)) -> c_10(__^#(X1, X2)) , __^#(mark(X1), X2) -> c_9(__^#(X1, X2))} The usable rules for this path are the following: { active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z))) , active(__(X, nil())) -> mark(X) , active(__(nil(), X)) -> mark(X) , active(and(tt(), X)) -> mark(X) , active(isNePal(__(I, __(P, I)))) -> mark(tt()) , active(__(X1, X2)) -> __(active(X1), X2) , active(__(X1, X2)) -> __(X1, active(X2)) , active(and(X1, X2)) -> and(active(X1), X2) , active(isNePal(X)) -> isNePal(active(X)) , __(mark(X1), X2) -> mark(__(X1, X2)) , __(X1, mark(X2)) -> mark(__(X1, X2)) , __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(mark(X1), X2) -> mark(and(X1, X2)) , isNePal(mark(X)) -> mark(isNePal(X)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2)) , isNePal(ok(X)) -> ok(isNePal(X))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z))) , active(__(X, nil())) -> mark(X) , active(__(nil(), X)) -> mark(X) , active(and(tt(), X)) -> mark(X) , active(isNePal(__(I, __(P, I)))) -> mark(tt()) , active(__(X1, X2)) -> __(active(X1), X2) , active(__(X1, X2)) -> __(X1, active(X2)) , active(and(X1, X2)) -> and(active(X1), X2) , active(isNePal(X)) -> isNePal(active(X)) , __(mark(X1), X2) -> mark(__(X1, X2)) , __(X1, mark(X2)) -> mark(__(X1, X2)) , __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(mark(X1), X2) -> mark(and(X1, X2)) , isNePal(mark(X)) -> mark(isNePal(X)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2)) , isNePal(ok(X)) -> ok(isNePal(X)) , active^#(__(X1, X2)) -> c_5(__^#(active(X1), X2)) , __^#(ok(X1), ok(X2)) -> c_18(__^#(X1, X2)) , __^#(X1, mark(X2)) -> c_10(__^#(X1, X2)) , __^#(mark(X1), X2) -> c_9(__^#(X1, X2))} Details: We apply the weight gap principle, strictly orienting the rules { active(and(tt(), X)) -> mark(X) , __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2)) , __^#(ok(X1), ok(X2)) -> c_18(__^#(X1, X2)) , __^#(X1, mark(X2)) -> c_10(__^#(X1, X2)) , __^#(mark(X1), X2) -> c_9(__^#(X1, X2))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { active(and(tt(), X)) -> mark(X) , __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2)) , __^#(ok(X1), ok(X2)) -> c_18(__^#(X1, X2)) , __^#(X1, mark(X2)) -> c_10(__^#(X1, X2)) , __^#(mark(X1), X2) -> c_9(__^#(X1, X2))} Details: Interpretation Functions: active(x1) = [1] x1 + [1] __(x1, x2) = [1] x1 + [1] x2 + [0] mark(x1) = [1] x1 + [1] nil() = [0] and(x1, x2) = [1] x1 + [1] x2 + [3] tt() = [0] isNePal(x1) = [1] x1 + [0] proper(x1) = [0] x1 + [0] ok(x1) = [1] x1 + [8] top(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [1] c_0(x1) = [0] x1 + [0] __^#(x1, x2) = [1] x1 + [1] x2 + [1] c_1() = [0] c_2() = [0] c_3() = [0] c_4() = [0] c_5(x1) = [1] x1 + [1] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] and^#(x1, x2) = [0] x1 + [0] x2 + [0] c_8(x1) = [0] x1 + [0] isNePal^#(x1) = [0] x1 + [0] c_9(x1) = [1] x1 + [0] c_10(x1) = [1] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14() = [0] c_15(x1) = [0] x1 + [0] c_16() = [0] c_17(x1) = [0] x1 + [0] c_18(x1) = [1] x1 + [0] c_19(x1) = [0] x1 + [0] c_20(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_21(x1) = [0] x1 + [0] c_22(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {active^#(__(X1, X2)) -> c_5(__^#(active(X1), X2))} and weakly orienting the rules { active(and(tt(), X)) -> mark(X) , __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2)) , __^#(ok(X1), ok(X2)) -> c_18(__^#(X1, X2)) , __^#(X1, mark(X2)) -> c_10(__^#(X1, X2)) , __^#(mark(X1), X2) -> c_9(__^#(X1, X2))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {active^#(__(X1, X2)) -> c_5(__^#(active(X1), X2))} Details: Interpretation Functions: active(x1) = [1] x1 + [1] __(x1, x2) = [1] x1 + [1] x2 + [0] mark(x1) = [1] x1 + [1] nil() = [0] and(x1, x2) = [1] x1 + [1] x2 + [0] tt() = [0] isNePal(x1) = [1] x1 + [0] proper(x1) = [0] x1 + [0] ok(x1) = [1] x1 + [8] top(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [9] c_0(x1) = [0] x1 + [0] __^#(x1, x2) = [1] x1 + [1] x2 + [0] c_1() = [0] c_2() = [0] c_3() = [0] c_4() = [0] c_5(x1) = [1] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] and^#(x1, x2) = [0] x1 + [0] x2 + [0] c_8(x1) = [0] x1 + [0] isNePal^#(x1) = [0] x1 + [0] c_9(x1) = [1] x1 + [1] c_10(x1) = [1] x1 + [1] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14() = [0] c_15(x1) = [0] x1 + [0] c_16() = [0] c_17(x1) = [0] x1 + [0] c_18(x1) = [1] x1 + [1] c_19(x1) = [0] x1 + [0] c_20(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_21(x1) = [0] x1 + [0] c_22(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {active(isNePal(__(I, __(P, I)))) -> mark(tt())} and weakly orienting the rules { active^#(__(X1, X2)) -> c_5(__^#(active(X1), X2)) , active(and(tt(), X)) -> mark(X) , __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2)) , __^#(ok(X1), ok(X2)) -> c_18(__^#(X1, X2)) , __^#(X1, mark(X2)) -> c_10(__^#(X1, X2)) , __^#(mark(X1), X2) -> c_9(__^#(X1, X2))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {active(isNePal(__(I, __(P, I)))) -> mark(tt())} Details: Interpretation Functions: active(x1) = [1] x1 + [1] __(x1, x2) = [1] x1 + [1] x2 + [0] mark(x1) = [1] x1 + [1] nil() = [0] and(x1, x2) = [1] x1 + [1] x2 + [0] tt() = [0] isNePal(x1) = [1] x1 + [2] proper(x1) = [0] x1 + [0] ok(x1) = [1] x1 + [8] top(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [1] c_0(x1) = [0] x1 + [0] __^#(x1, x2) = [1] x1 + [1] x2 + [0] c_1() = [0] c_2() = [0] c_3() = [0] c_4() = [0] c_5(x1) = [1] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] and^#(x1, x2) = [0] x1 + [0] x2 + [0] c_8(x1) = [0] x1 + [0] isNePal^#(x1) = [0] x1 + [0] c_9(x1) = [1] x1 + [1] c_10(x1) = [1] x1 + [1] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14() = [0] c_15(x1) = [0] x1 + [0] c_16() = [0] c_17(x1) = [0] x1 + [0] c_18(x1) = [1] x1 + [1] c_19(x1) = [0] x1 + [0] c_20(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_21(x1) = [0] x1 + [0] c_22(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { active(__(X, nil())) -> mark(X) , active(__(nil(), X)) -> mark(X)} and weakly orienting the rules { active(isNePal(__(I, __(P, I)))) -> mark(tt()) , active^#(__(X1, X2)) -> c_5(__^#(active(X1), X2)) , active(and(tt(), X)) -> mark(X) , __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2)) , __^#(ok(X1), ok(X2)) -> c_18(__^#(X1, X2)) , __^#(X1, mark(X2)) -> c_10(__^#(X1, X2)) , __^#(mark(X1), X2) -> c_9(__^#(X1, X2))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { active(__(X, nil())) -> mark(X) , active(__(nil(), X)) -> mark(X)} Details: Interpretation Functions: active(x1) = [1] x1 + [0] __(x1, x2) = [1] x1 + [1] x2 + [9] mark(x1) = [1] x1 + [0] nil() = [8] and(x1, x2) = [1] x1 + [1] x2 + [0] tt() = [0] isNePal(x1) = [1] x1 + [0] proper(x1) = [0] x1 + [0] ok(x1) = [1] x1 + [0] top(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [0] c_0(x1) = [0] x1 + [0] __^#(x1, x2) = [1] x1 + [1] x2 + [0] c_1() = [0] c_2() = [0] c_3() = [0] c_4() = [0] c_5(x1) = [1] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] and^#(x1, x2) = [0] x1 + [0] x2 + [0] c_8(x1) = [0] x1 + [0] isNePal^#(x1) = [0] x1 + [0] c_9(x1) = [1] x1 + [0] c_10(x1) = [1] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14() = [0] c_15(x1) = [0] x1 + [0] c_16() = [0] c_17(x1) = [0] x1 + [0] c_18(x1) = [1] x1 + [0] c_19(x1) = [0] x1 + [0] c_20(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_21(x1) = [0] x1 + [0] c_22(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z)))} and weakly orienting the rules { active(__(X, nil())) -> mark(X) , active(__(nil(), X)) -> mark(X) , active(isNePal(__(I, __(P, I)))) -> mark(tt()) , active^#(__(X1, X2)) -> c_5(__^#(active(X1), X2)) , active(and(tt(), X)) -> mark(X) , __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2)) , __^#(ok(X1), ok(X2)) -> c_18(__^#(X1, X2)) , __^#(X1, mark(X2)) -> c_10(__^#(X1, X2)) , __^#(mark(X1), X2) -> c_9(__^#(X1, X2))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z)))} Details: Interpretation Functions: active(x1) = [1] x1 + [1] __(x1, x2) = [1] x1 + [1] x2 + [0] mark(x1) = [1] x1 + [0] nil() = [0] and(x1, x2) = [1] x1 + [1] x2 + [0] tt() = [0] isNePal(x1) = [1] x1 + [2] proper(x1) = [0] x1 + [0] ok(x1) = [1] x1 + [2] top(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [1] c_0(x1) = [0] x1 + [0] __^#(x1, x2) = [1] x1 + [1] x2 + [0] c_1() = [0] c_2() = [0] c_3() = [0] c_4() = [0] c_5(x1) = [1] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] and^#(x1, x2) = [0] x1 + [0] x2 + [0] c_8(x1) = [0] x1 + [0] isNePal^#(x1) = [0] x1 + [0] c_9(x1) = [1] x1 + [0] c_10(x1) = [1] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14() = [0] c_15(x1) = [0] x1 + [0] c_16() = [0] c_17(x1) = [0] x1 + [0] c_18(x1) = [1] x1 + [1] c_19(x1) = [0] x1 + [0] c_20(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_21(x1) = [0] x1 + [0] c_22(x1) = [0] x1 + [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { active(__(X1, X2)) -> __(active(X1), X2) , active(__(X1, X2)) -> __(X1, active(X2)) , active(and(X1, X2)) -> and(active(X1), X2) , active(isNePal(X)) -> isNePal(active(X)) , __(mark(X1), X2) -> mark(__(X1, X2)) , __(X1, mark(X2)) -> mark(__(X1, X2)) , and(mark(X1), X2) -> mark(and(X1, X2)) , isNePal(mark(X)) -> mark(isNePal(X)) , isNePal(ok(X)) -> ok(isNePal(X))} Weak Rules: { active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z))) , active(__(X, nil())) -> mark(X) , active(__(nil(), X)) -> mark(X) , active(isNePal(__(I, __(P, I)))) -> mark(tt()) , active^#(__(X1, X2)) -> c_5(__^#(active(X1), X2)) , active(and(tt(), X)) -> mark(X) , __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2)) , __^#(ok(X1), ok(X2)) -> c_18(__^#(X1, X2)) , __^#(X1, mark(X2)) -> c_10(__^#(X1, X2)) , __^#(mark(X1), X2) -> c_9(__^#(X1, X2))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { active(__(X1, X2)) -> __(active(X1), X2) , active(__(X1, X2)) -> __(X1, active(X2)) , active(and(X1, X2)) -> and(active(X1), X2) , active(isNePal(X)) -> isNePal(active(X)) , __(mark(X1), X2) -> mark(__(X1, X2)) , __(X1, mark(X2)) -> mark(__(X1, X2)) , and(mark(X1), X2) -> mark(and(X1, X2)) , isNePal(mark(X)) -> mark(isNePal(X)) , isNePal(ok(X)) -> ok(isNePal(X))} Weak Rules: { active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z))) , active(__(X, nil())) -> mark(X) , active(__(nil(), X)) -> mark(X) , active(isNePal(__(I, __(P, I)))) -> mark(tt()) , active^#(__(X1, X2)) -> c_5(__^#(active(X1), X2)) , active(and(tt(), X)) -> mark(X) , __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2)) , __^#(ok(X1), ok(X2)) -> c_18(__^#(X1, X2)) , __^#(X1, mark(X2)) -> c_10(__^#(X1, X2)) , __^#(mark(X1), X2) -> c_9(__^#(X1, X2))} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { mark_0(2) -> 2 , nil_0() -> 2 , tt_0() -> 2 , ok_0(2) -> 2 , active^#_0(2) -> 1 , __^#_0(2, 2) -> 1 , c_9_0(1) -> 1 , c_10_0(1) -> 1 , c_18_0(1) -> 1} 4) { active^#(and(X1, X2)) -> c_7(and^#(active(X1), X2)) , and^#(ok(X1), ok(X2)) -> c_19(and^#(X1, X2)) , and^#(mark(X1), X2) -> c_11(and^#(X1, X2))} The usable rules for this path are the following: { active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z))) , active(__(X, nil())) -> mark(X) , active(__(nil(), X)) -> mark(X) , active(and(tt(), X)) -> mark(X) , active(isNePal(__(I, __(P, I)))) -> mark(tt()) , active(__(X1, X2)) -> __(active(X1), X2) , active(__(X1, X2)) -> __(X1, active(X2)) , active(and(X1, X2)) -> and(active(X1), X2) , active(isNePal(X)) -> isNePal(active(X)) , __(mark(X1), X2) -> mark(__(X1, X2)) , __(X1, mark(X2)) -> mark(__(X1, X2)) , __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(mark(X1), X2) -> mark(and(X1, X2)) , isNePal(mark(X)) -> mark(isNePal(X)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2)) , isNePal(ok(X)) -> ok(isNePal(X))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z))) , active(__(X, nil())) -> mark(X) , active(__(nil(), X)) -> mark(X) , active(and(tt(), X)) -> mark(X) , active(isNePal(__(I, __(P, I)))) -> mark(tt()) , active(__(X1, X2)) -> __(active(X1), X2) , active(__(X1, X2)) -> __(X1, active(X2)) , active(and(X1, X2)) -> and(active(X1), X2) , active(isNePal(X)) -> isNePal(active(X)) , __(mark(X1), X2) -> mark(__(X1, X2)) , __(X1, mark(X2)) -> mark(__(X1, X2)) , __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(mark(X1), X2) -> mark(and(X1, X2)) , isNePal(mark(X)) -> mark(isNePal(X)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2)) , isNePal(ok(X)) -> ok(isNePal(X)) , active^#(and(X1, X2)) -> c_7(and^#(active(X1), X2)) , and^#(ok(X1), ok(X2)) -> c_19(and^#(X1, X2)) , and^#(mark(X1), X2) -> c_11(and^#(X1, X2))} Details: We apply the weight gap principle, strictly orienting the rules { __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2)) , and^#(ok(X1), ok(X2)) -> c_19(and^#(X1, X2))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2)) , and^#(ok(X1), ok(X2)) -> c_19(and^#(X1, X2))} Details: Interpretation Functions: active(x1) = [1] x1 + [1] __(x1, x2) = [1] x1 + [1] x2 + [0] mark(x1) = [1] x1 + [1] nil() = [0] and(x1, x2) = [1] x1 + [1] x2 + [0] tt() = [0] isNePal(x1) = [1] x1 + [0] proper(x1) = [0] x1 + [0] ok(x1) = [1] x1 + [2] top(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [1] c_0(x1) = [0] x1 + [0] __^#(x1, x2) = [0] x1 + [0] x2 + [0] c_1() = [0] c_2() = [0] c_3() = [0] c_4() = [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [1] x1 + [15] and^#(x1, x2) = [1] x1 + [1] x2 + [0] c_8(x1) = [0] x1 + [0] isNePal^#(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [1] x1 + [1] c_12(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14() = [0] c_15(x1) = [0] x1 + [0] c_16() = [0] c_17(x1) = [0] x1 + [0] c_18(x1) = [0] x1 + [0] c_19(x1) = [1] x1 + [1] c_20(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_21(x1) = [0] x1 + [0] c_22(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { active(and(tt(), X)) -> mark(X) , active^#(and(X1, X2)) -> c_7(and^#(active(X1), X2))} and weakly orienting the rules { __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2)) , and^#(ok(X1), ok(X2)) -> c_19(and^#(X1, X2))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { active(and(tt(), X)) -> mark(X) , active^#(and(X1, X2)) -> c_7(and^#(active(X1), X2))} Details: Interpretation Functions: active(x1) = [1] x1 + [1] __(x1, x2) = [1] x1 + [1] x2 + [0] mark(x1) = [1] x1 + [1] nil() = [0] and(x1, x2) = [1] x1 + [1] x2 + [3] tt() = [0] isNePal(x1) = [1] x1 + [0] proper(x1) = [0] x1 + [0] ok(x1) = [1] x1 + [8] top(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [0] c_0(x1) = [0] x1 + [0] __^#(x1, x2) = [0] x1 + [0] x2 + [0] c_1() = [0] c_2() = [0] c_3() = [0] c_4() = [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [1] x1 + [0] and^#(x1, x2) = [1] x1 + [1] x2 + [0] c_8(x1) = [0] x1 + [0] isNePal^#(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [1] x1 + [1] c_12(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14() = [0] c_15(x1) = [0] x1 + [0] c_16() = [0] c_17(x1) = [0] x1 + [0] c_18(x1) = [0] x1 + [0] c_19(x1) = [1] x1 + [1] c_20(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_21(x1) = [0] x1 + [0] c_22(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {active(isNePal(__(I, __(P, I)))) -> mark(tt())} and weakly orienting the rules { active(and(tt(), X)) -> mark(X) , active^#(and(X1, X2)) -> c_7(and^#(active(X1), X2)) , __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2)) , and^#(ok(X1), ok(X2)) -> c_19(and^#(X1, X2))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {active(isNePal(__(I, __(P, I)))) -> mark(tt())} Details: Interpretation Functions: active(x1) = [1] x1 + [1] __(x1, x2) = [1] x1 + [1] x2 + [0] mark(x1) = [1] x1 + [1] nil() = [0] and(x1, x2) = [1] x1 + [1] x2 + [4] tt() = [0] isNePal(x1) = [1] x1 + [8] proper(x1) = [0] x1 + [0] ok(x1) = [1] x1 + [8] top(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [1] c_0(x1) = [0] x1 + [0] __^#(x1, x2) = [0] x1 + [0] x2 + [0] c_1() = [0] c_2() = [0] c_3() = [0] c_4() = [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [1] x1 + [0] and^#(x1, x2) = [1] x1 + [1] x2 + [0] c_8(x1) = [0] x1 + [0] isNePal^#(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [1] x1 + [1] c_12(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14() = [0] c_15(x1) = [0] x1 + [0] c_16() = [0] c_17(x1) = [0] x1 + [0] c_18(x1) = [0] x1 + [0] c_19(x1) = [1] x1 + [1] c_20(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_21(x1) = [0] x1 + [0] c_22(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {and^#(mark(X1), X2) -> c_11(and^#(X1, X2))} and weakly orienting the rules { active(isNePal(__(I, __(P, I)))) -> mark(tt()) , active(and(tt(), X)) -> mark(X) , active^#(and(X1, X2)) -> c_7(and^#(active(X1), X2)) , __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2)) , and^#(ok(X1), ok(X2)) -> c_19(and^#(X1, X2))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {and^#(mark(X1), X2) -> c_11(and^#(X1, X2))} Details: Interpretation Functions: active(x1) = [1] x1 + [1] __(x1, x2) = [1] x1 + [1] x2 + [0] mark(x1) = [1] x1 + [1] nil() = [0] and(x1, x2) = [1] x1 + [1] x2 + [0] tt() = [0] isNePal(x1) = [1] x1 + [0] proper(x1) = [0] x1 + [0] ok(x1) = [1] x1 + [0] top(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [1] c_0(x1) = [0] x1 + [0] __^#(x1, x2) = [0] x1 + [0] x2 + [0] c_1() = [0] c_2() = [0] c_3() = [0] c_4() = [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [1] x1 + [0] and^#(x1, x2) = [1] x1 + [1] x2 + [0] c_8(x1) = [0] x1 + [0] isNePal^#(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [1] x1 + [0] c_12(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14() = [0] c_15(x1) = [0] x1 + [0] c_16() = [0] c_17(x1) = [0] x1 + [0] c_18(x1) = [0] x1 + [0] c_19(x1) = [1] x1 + [0] c_20(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_21(x1) = [0] x1 + [0] c_22(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { active(__(X, nil())) -> mark(X) , active(__(nil(), X)) -> mark(X)} and weakly orienting the rules { and^#(mark(X1), X2) -> c_11(and^#(X1, X2)) , active(isNePal(__(I, __(P, I)))) -> mark(tt()) , active(and(tt(), X)) -> mark(X) , active^#(and(X1, X2)) -> c_7(and^#(active(X1), X2)) , __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2)) , and^#(ok(X1), ok(X2)) -> c_19(and^#(X1, X2))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { active(__(X, nil())) -> mark(X) , active(__(nil(), X)) -> mark(X)} Details: Interpretation Functions: active(x1) = [1] x1 + [1] __(x1, x2) = [1] x1 + [1] x2 + [0] mark(x1) = [1] x1 + [8] nil() = [10] and(x1, x2) = [1] x1 + [1] x2 + [8] tt() = [0] isNePal(x1) = [1] x1 + [7] proper(x1) = [0] x1 + [0] ok(x1) = [1] x1 + [0] top(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [1] c_0(x1) = [0] x1 + [0] __^#(x1, x2) = [0] x1 + [0] x2 + [0] c_1() = [0] c_2() = [0] c_3() = [0] c_4() = [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [1] x1 + [0] and^#(x1, x2) = [1] x1 + [1] x2 + [8] c_8(x1) = [0] x1 + [0] isNePal^#(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [1] x1 + [1] c_12(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14() = [0] c_15(x1) = [0] x1 + [0] c_16() = [0] c_17(x1) = [0] x1 + [0] c_18(x1) = [0] x1 + [0] c_19(x1) = [1] x1 + [0] c_20(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_21(x1) = [0] x1 + [0] c_22(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z)))} and weakly orienting the rules { active(__(X, nil())) -> mark(X) , active(__(nil(), X)) -> mark(X) , and^#(mark(X1), X2) -> c_11(and^#(X1, X2)) , active(isNePal(__(I, __(P, I)))) -> mark(tt()) , active(and(tt(), X)) -> mark(X) , active^#(and(X1, X2)) -> c_7(and^#(active(X1), X2)) , __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2)) , and^#(ok(X1), ok(X2)) -> c_19(and^#(X1, X2))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z)))} Details: Interpretation Functions: active(x1) = [1] x1 + [4] __(x1, x2) = [1] x1 + [1] x2 + [0] mark(x1) = [1] x1 + [2] nil() = [0] and(x1, x2) = [1] x1 + [1] x2 + [0] tt() = [0] isNePal(x1) = [1] x1 + [0] proper(x1) = [0] x1 + [0] ok(x1) = [1] x1 + [0] top(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [9] c_0(x1) = [0] x1 + [0] __^#(x1, x2) = [0] x1 + [0] x2 + [0] c_1() = [0] c_2() = [0] c_3() = [0] c_4() = [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [1] x1 + [1] and^#(x1, x2) = [1] x1 + [1] x2 + [0] c_8(x1) = [0] x1 + [0] isNePal^#(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [1] x1 + [1] c_12(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14() = [0] c_15(x1) = [0] x1 + [0] c_16() = [0] c_17(x1) = [0] x1 + [0] c_18(x1) = [0] x1 + [0] c_19(x1) = [1] x1 + [0] c_20(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_21(x1) = [0] x1 + [0] c_22(x1) = [0] x1 + [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { active(__(X1, X2)) -> __(active(X1), X2) , active(__(X1, X2)) -> __(X1, active(X2)) , active(and(X1, X2)) -> and(active(X1), X2) , active(isNePal(X)) -> isNePal(active(X)) , __(mark(X1), X2) -> mark(__(X1, X2)) , __(X1, mark(X2)) -> mark(__(X1, X2)) , and(mark(X1), X2) -> mark(and(X1, X2)) , isNePal(mark(X)) -> mark(isNePal(X)) , isNePal(ok(X)) -> ok(isNePal(X))} Weak Rules: { active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z))) , active(__(X, nil())) -> mark(X) , active(__(nil(), X)) -> mark(X) , and^#(mark(X1), X2) -> c_11(and^#(X1, X2)) , active(isNePal(__(I, __(P, I)))) -> mark(tt()) , active(and(tt(), X)) -> mark(X) , active^#(and(X1, X2)) -> c_7(and^#(active(X1), X2)) , __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2)) , and^#(ok(X1), ok(X2)) -> c_19(and^#(X1, X2))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { active(__(X1, X2)) -> __(active(X1), X2) , active(__(X1, X2)) -> __(X1, active(X2)) , active(and(X1, X2)) -> and(active(X1), X2) , active(isNePal(X)) -> isNePal(active(X)) , __(mark(X1), X2) -> mark(__(X1, X2)) , __(X1, mark(X2)) -> mark(__(X1, X2)) , and(mark(X1), X2) -> mark(and(X1, X2)) , isNePal(mark(X)) -> mark(isNePal(X)) , isNePal(ok(X)) -> ok(isNePal(X))} Weak Rules: { active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z))) , active(__(X, nil())) -> mark(X) , active(__(nil(), X)) -> mark(X) , and^#(mark(X1), X2) -> c_11(and^#(X1, X2)) , active(isNePal(__(I, __(P, I)))) -> mark(tt()) , active(and(tt(), X)) -> mark(X) , active^#(and(X1, X2)) -> c_7(and^#(active(X1), X2)) , __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2)) , and^#(ok(X1), ok(X2)) -> c_19(and^#(X1, X2))} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { mark_0(3) -> 3 , mark_0(4) -> 3 , mark_0(6) -> 3 , mark_0(9) -> 3 , nil_0() -> 4 , tt_0() -> 6 , ok_0(3) -> 9 , ok_0(4) -> 9 , ok_0(6) -> 9 , ok_0(9) -> 9 , active^#_0(3) -> 11 , active^#_0(4) -> 11 , active^#_0(6) -> 11 , active^#_0(9) -> 11 , and^#_0(3, 3) -> 21 , and^#_0(3, 4) -> 21 , and^#_0(3, 6) -> 21 , and^#_0(3, 9) -> 21 , and^#_0(4, 3) -> 21 , and^#_0(4, 4) -> 21 , and^#_0(4, 6) -> 21 , and^#_0(4, 9) -> 21 , and^#_0(6, 3) -> 21 , and^#_0(6, 4) -> 21 , and^#_0(6, 6) -> 21 , and^#_0(6, 9) -> 21 , and^#_0(9, 3) -> 21 , and^#_0(9, 4) -> 21 , and^#_0(9, 6) -> 21 , and^#_0(9, 9) -> 21 , c_11_0(21) -> 21 , c_19_0(21) -> 21} 5) { active^#(isNePal(X)) -> c_8(isNePal^#(active(X))) , isNePal^#(ok(X)) -> c_20(isNePal^#(X)) , isNePal^#(mark(X)) -> c_12(isNePal^#(X))} The usable rules for this path are the following: { active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z))) , active(__(X, nil())) -> mark(X) , active(__(nil(), X)) -> mark(X) , active(and(tt(), X)) -> mark(X) , active(isNePal(__(I, __(P, I)))) -> mark(tt()) , active(__(X1, X2)) -> __(active(X1), X2) , active(__(X1, X2)) -> __(X1, active(X2)) , active(and(X1, X2)) -> and(active(X1), X2) , active(isNePal(X)) -> isNePal(active(X)) , __(mark(X1), X2) -> mark(__(X1, X2)) , __(X1, mark(X2)) -> mark(__(X1, X2)) , __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(mark(X1), X2) -> mark(and(X1, X2)) , isNePal(mark(X)) -> mark(isNePal(X)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2)) , isNePal(ok(X)) -> ok(isNePal(X))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z))) , active(__(X, nil())) -> mark(X) , active(__(nil(), X)) -> mark(X) , active(and(tt(), X)) -> mark(X) , active(isNePal(__(I, __(P, I)))) -> mark(tt()) , active(__(X1, X2)) -> __(active(X1), X2) , active(__(X1, X2)) -> __(X1, active(X2)) , active(and(X1, X2)) -> and(active(X1), X2) , active(isNePal(X)) -> isNePal(active(X)) , __(mark(X1), X2) -> mark(__(X1, X2)) , __(X1, mark(X2)) -> mark(__(X1, X2)) , __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(mark(X1), X2) -> mark(and(X1, X2)) , isNePal(mark(X)) -> mark(isNePal(X)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2)) , isNePal(ok(X)) -> ok(isNePal(X)) , active^#(isNePal(X)) -> c_8(isNePal^#(active(X))) , isNePal^#(ok(X)) -> c_20(isNePal^#(X)) , isNePal^#(mark(X)) -> c_12(isNePal^#(X))} Details: We apply the weight gap principle, strictly orienting the rules { active(and(tt(), X)) -> mark(X) , __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { active(and(tt(), X)) -> mark(X) , __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2))} Details: Interpretation Functions: active(x1) = [1] x1 + [1] __(x1, x2) = [1] x1 + [1] x2 + [0] mark(x1) = [1] x1 + [1] nil() = [0] and(x1, x2) = [1] x1 + [1] x2 + [1] tt() = [0] isNePal(x1) = [1] x1 + [0] proper(x1) = [0] x1 + [0] ok(x1) = [1] x1 + [1] top(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [1] c_0(x1) = [0] x1 + [0] __^#(x1, x2) = [0] x1 + [0] x2 + [0] c_1() = [0] c_2() = [0] c_3() = [0] c_4() = [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] and^#(x1, x2) = [0] x1 + [0] x2 + [0] c_8(x1) = [1] x1 + [0] isNePal^#(x1) = [1] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [1] x1 + [1] proper^#(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14() = [0] c_15(x1) = [0] x1 + [0] c_16() = [0] c_17(x1) = [0] x1 + [0] c_18(x1) = [0] x1 + [0] c_19(x1) = [0] x1 + [0] c_20(x1) = [1] x1 + [1] top^#(x1) = [0] x1 + [0] c_21(x1) = [0] x1 + [0] c_22(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {isNePal^#(mark(X)) -> c_12(isNePal^#(X))} and weakly orienting the rules { active(and(tt(), X)) -> mark(X) , __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {isNePal^#(mark(X)) -> c_12(isNePal^#(X))} Details: Interpretation Functions: active(x1) = [1] x1 + [1] __(x1, x2) = [1] x1 + [1] x2 + [0] mark(x1) = [1] x1 + [1] nil() = [0] and(x1, x2) = [1] x1 + [1] x2 + [0] tt() = [0] isNePal(x1) = [1] x1 + [0] proper(x1) = [0] x1 + [0] ok(x1) = [1] x1 + [0] top(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [1] c_0(x1) = [0] x1 + [0] __^#(x1, x2) = [0] x1 + [0] x2 + [0] c_1() = [0] c_2() = [0] c_3() = [0] c_4() = [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] and^#(x1, x2) = [0] x1 + [0] x2 + [0] c_8(x1) = [1] x1 + [1] isNePal^#(x1) = [1] x1 + [1] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [1] x1 + [0] proper^#(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14() = [0] c_15(x1) = [0] x1 + [0] c_16() = [0] c_17(x1) = [0] x1 + [0] c_18(x1) = [0] x1 + [0] c_19(x1) = [0] x1 + [0] c_20(x1) = [1] x1 + [0] top^#(x1) = [0] x1 + [0] c_21(x1) = [0] x1 + [0] c_22(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {isNePal^#(ok(X)) -> c_20(isNePal^#(X))} and weakly orienting the rules { isNePal^#(mark(X)) -> c_12(isNePal^#(X)) , active(and(tt(), X)) -> mark(X) , __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {isNePal^#(ok(X)) -> c_20(isNePal^#(X))} Details: Interpretation Functions: active(x1) = [1] x1 + [1] __(x1, x2) = [1] x1 + [1] x2 + [0] mark(x1) = [1] x1 + [1] nil() = [0] and(x1, x2) = [1] x1 + [1] x2 + [0] tt() = [0] isNePal(x1) = [1] x1 + [0] proper(x1) = [0] x1 + [0] ok(x1) = [1] x1 + [10] top(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [1] c_0(x1) = [0] x1 + [0] __^#(x1, x2) = [0] x1 + [0] x2 + [0] c_1() = [0] c_2() = [0] c_3() = [0] c_4() = [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] and^#(x1, x2) = [0] x1 + [0] x2 + [0] c_8(x1) = [1] x1 + [1] isNePal^#(x1) = [1] x1 + [3] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [1] x1 + [0] proper^#(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14() = [0] c_15(x1) = [0] x1 + [0] c_16() = [0] c_17(x1) = [0] x1 + [0] c_18(x1) = [0] x1 + [0] c_19(x1) = [0] x1 + [0] c_20(x1) = [1] x1 + [0] top^#(x1) = [0] x1 + [0] c_21(x1) = [0] x1 + [0] c_22(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { active(__(X, nil())) -> mark(X) , active(__(nil(), X)) -> mark(X) , active(isNePal(__(I, __(P, I)))) -> mark(tt()) , active^#(isNePal(X)) -> c_8(isNePal^#(active(X)))} and weakly orienting the rules { isNePal^#(ok(X)) -> c_20(isNePal^#(X)) , isNePal^#(mark(X)) -> c_12(isNePal^#(X)) , active(and(tt(), X)) -> mark(X) , __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { active(__(X, nil())) -> mark(X) , active(__(nil(), X)) -> mark(X) , active(isNePal(__(I, __(P, I)))) -> mark(tt()) , active^#(isNePal(X)) -> c_8(isNePal^#(active(X)))} Details: Interpretation Functions: active(x1) = [1] x1 + [0] __(x1, x2) = [1] x1 + [1] x2 + [12] mark(x1) = [1] x1 + [0] nil() = [8] and(x1, x2) = [1] x1 + [1] x2 + [0] tt() = [0] isNePal(x1) = [1] x1 + [8] proper(x1) = [0] x1 + [0] ok(x1) = [1] x1 + [0] top(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [1] c_0(x1) = [0] x1 + [0] __^#(x1, x2) = [0] x1 + [0] x2 + [0] c_1() = [0] c_2() = [0] c_3() = [0] c_4() = [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] and^#(x1, x2) = [0] x1 + [0] x2 + [0] c_8(x1) = [1] x1 + [0] isNePal^#(x1) = [1] x1 + [5] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [1] x1 + [0] proper^#(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14() = [0] c_15(x1) = [0] x1 + [0] c_16() = [0] c_17(x1) = [0] x1 + [0] c_18(x1) = [0] x1 + [0] c_19(x1) = [0] x1 + [0] c_20(x1) = [1] x1 + [0] top^#(x1) = [0] x1 + [0] c_21(x1) = [0] x1 + [0] c_22(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z)))} and weakly orienting the rules { active(__(X, nil())) -> mark(X) , active(__(nil(), X)) -> mark(X) , active(isNePal(__(I, __(P, I)))) -> mark(tt()) , active^#(isNePal(X)) -> c_8(isNePal^#(active(X))) , isNePal^#(ok(X)) -> c_20(isNePal^#(X)) , isNePal^#(mark(X)) -> c_12(isNePal^#(X)) , active(and(tt(), X)) -> mark(X) , __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z)))} Details: Interpretation Functions: active(x1) = [1] x1 + [1] __(x1, x2) = [1] x1 + [1] x2 + [0] mark(x1) = [1] x1 + [0] nil() = [0] and(x1, x2) = [1] x1 + [1] x2 + [0] tt() = [0] isNePal(x1) = [1] x1 + [0] proper(x1) = [0] x1 + [0] ok(x1) = [1] x1 + [0] top(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [9] c_0(x1) = [0] x1 + [0] __^#(x1, x2) = [0] x1 + [0] x2 + [0] c_1() = [0] c_2() = [0] c_3() = [0] c_4() = [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] and^#(x1, x2) = [0] x1 + [0] x2 + [0] c_8(x1) = [1] x1 + [2] isNePal^#(x1) = [1] x1 + [5] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [1] x1 + [0] proper^#(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14() = [0] c_15(x1) = [0] x1 + [0] c_16() = [0] c_17(x1) = [0] x1 + [0] c_18(x1) = [0] x1 + [0] c_19(x1) = [0] x1 + [0] c_20(x1) = [1] x1 + [0] top^#(x1) = [0] x1 + [0] c_21(x1) = [0] x1 + [0] c_22(x1) = [0] x1 + [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { active(__(X1, X2)) -> __(active(X1), X2) , active(__(X1, X2)) -> __(X1, active(X2)) , active(and(X1, X2)) -> and(active(X1), X2) , active(isNePal(X)) -> isNePal(active(X)) , __(mark(X1), X2) -> mark(__(X1, X2)) , __(X1, mark(X2)) -> mark(__(X1, X2)) , and(mark(X1), X2) -> mark(and(X1, X2)) , isNePal(mark(X)) -> mark(isNePal(X)) , isNePal(ok(X)) -> ok(isNePal(X))} Weak Rules: { active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z))) , active(__(X, nil())) -> mark(X) , active(__(nil(), X)) -> mark(X) , active(isNePal(__(I, __(P, I)))) -> mark(tt()) , active^#(isNePal(X)) -> c_8(isNePal^#(active(X))) , isNePal^#(ok(X)) -> c_20(isNePal^#(X)) , isNePal^#(mark(X)) -> c_12(isNePal^#(X)) , active(and(tt(), X)) -> mark(X) , __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { active(__(X1, X2)) -> __(active(X1), X2) , active(__(X1, X2)) -> __(X1, active(X2)) , active(and(X1, X2)) -> and(active(X1), X2) , active(isNePal(X)) -> isNePal(active(X)) , __(mark(X1), X2) -> mark(__(X1, X2)) , __(X1, mark(X2)) -> mark(__(X1, X2)) , and(mark(X1), X2) -> mark(and(X1, X2)) , isNePal(mark(X)) -> mark(isNePal(X)) , isNePal(ok(X)) -> ok(isNePal(X))} Weak Rules: { active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z))) , active(__(X, nil())) -> mark(X) , active(__(nil(), X)) -> mark(X) , active(isNePal(__(I, __(P, I)))) -> mark(tt()) , active^#(isNePal(X)) -> c_8(isNePal^#(active(X))) , isNePal^#(ok(X)) -> c_20(isNePal^#(X)) , isNePal^#(mark(X)) -> c_12(isNePal^#(X)) , active(and(tt(), X)) -> mark(X) , __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2))} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { mark_0(3) -> 3 , mark_0(4) -> 3 , mark_0(6) -> 3 , mark_0(9) -> 3 , nil_0() -> 4 , tt_0() -> 6 , ok_0(3) -> 9 , ok_0(4) -> 9 , ok_0(6) -> 9 , ok_0(9) -> 9 , active^#_0(3) -> 11 , active^#_0(4) -> 11 , active^#_0(6) -> 11 , active^#_0(9) -> 11 , isNePal^#_0(3) -> 23 , isNePal^#_0(4) -> 23 , isNePal^#_0(6) -> 23 , isNePal^#_0(9) -> 23 , c_12_0(23) -> 23 , c_20_0(23) -> 23} 6) {active^#(__(X1, X2)) -> c_6(__^#(X1, active(X2)))} The usable rules for this path are the following: { active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z))) , active(__(X, nil())) -> mark(X) , active(__(nil(), X)) -> mark(X) , active(and(tt(), X)) -> mark(X) , active(isNePal(__(I, __(P, I)))) -> mark(tt()) , active(__(X1, X2)) -> __(active(X1), X2) , active(__(X1, X2)) -> __(X1, active(X2)) , active(and(X1, X2)) -> and(active(X1), X2) , active(isNePal(X)) -> isNePal(active(X)) , __(mark(X1), X2) -> mark(__(X1, X2)) , __(X1, mark(X2)) -> mark(__(X1, X2)) , __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(mark(X1), X2) -> mark(and(X1, X2)) , isNePal(mark(X)) -> mark(isNePal(X)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2)) , isNePal(ok(X)) -> ok(isNePal(X))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z))) , active(__(X, nil())) -> mark(X) , active(__(nil(), X)) -> mark(X) , active(and(tt(), X)) -> mark(X) , active(isNePal(__(I, __(P, I)))) -> mark(tt()) , active(__(X1, X2)) -> __(active(X1), X2) , active(__(X1, X2)) -> __(X1, active(X2)) , active(and(X1, X2)) -> and(active(X1), X2) , active(isNePal(X)) -> isNePal(active(X)) , __(mark(X1), X2) -> mark(__(X1, X2)) , __(X1, mark(X2)) -> mark(__(X1, X2)) , __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(mark(X1), X2) -> mark(and(X1, X2)) , isNePal(mark(X)) -> mark(isNePal(X)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2)) , isNePal(ok(X)) -> ok(isNePal(X)) , active^#(__(X1, X2)) -> c_6(__^#(X1, active(X2)))} Details: We apply the weight gap principle, strictly orienting the rules {active^#(__(X1, X2)) -> c_6(__^#(X1, active(X2)))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {active^#(__(X1, X2)) -> c_6(__^#(X1, active(X2)))} Details: Interpretation Functions: active(x1) = [1] x1 + [1] __(x1, x2) = [1] x1 + [1] x2 + [0] mark(x1) = [1] x1 + [1] nil() = [0] and(x1, x2) = [1] x1 + [1] x2 + [0] tt() = [0] isNePal(x1) = [1] x1 + [0] proper(x1) = [0] x1 + [0] ok(x1) = [1] x1 + [0] top(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [9] c_0(x1) = [0] x1 + [0] __^#(x1, x2) = [1] x1 + [1] x2 + [7] c_1() = [0] c_2() = [0] c_3() = [0] c_4() = [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [1] x1 + [0] c_7(x1) = [0] x1 + [0] and^#(x1, x2) = [0] x1 + [0] x2 + [0] c_8(x1) = [0] x1 + [0] isNePal^#(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14() = [0] c_15(x1) = [0] x1 + [0] c_16() = [0] c_17(x1) = [0] x1 + [0] c_18(x1) = [0] x1 + [0] c_19(x1) = [0] x1 + [0] c_20(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_21(x1) = [0] x1 + [0] c_22(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2))} and weakly orienting the rules {active^#(__(X1, X2)) -> c_6(__^#(X1, active(X2)))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2))} Details: Interpretation Functions: active(x1) = [1] x1 + [1] __(x1, x2) = [1] x1 + [1] x2 + [0] mark(x1) = [1] x1 + [1] nil() = [0] and(x1, x2) = [1] x1 + [1] x2 + [0] tt() = [0] isNePal(x1) = [1] x1 + [0] proper(x1) = [0] x1 + [0] ok(x1) = [1] x1 + [8] top(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [1] c_0(x1) = [0] x1 + [0] __^#(x1, x2) = [1] x1 + [1] x2 + [0] c_1() = [0] c_2() = [0] c_3() = [0] c_4() = [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [1] x1 + [0] c_7(x1) = [0] x1 + [0] and^#(x1, x2) = [0] x1 + [0] x2 + [0] c_8(x1) = [0] x1 + [0] isNePal^#(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14() = [0] c_15(x1) = [0] x1 + [0] c_16() = [0] c_17(x1) = [0] x1 + [0] c_18(x1) = [0] x1 + [0] c_19(x1) = [0] x1 + [0] c_20(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_21(x1) = [0] x1 + [0] c_22(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {active(isNePal(__(I, __(P, I)))) -> mark(tt())} and weakly orienting the rules { __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2)) , active^#(__(X1, X2)) -> c_6(__^#(X1, active(X2)))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {active(isNePal(__(I, __(P, I)))) -> mark(tt())} Details: Interpretation Functions: active(x1) = [1] x1 + [1] __(x1, x2) = [1] x1 + [1] x2 + [0] mark(x1) = [1] x1 + [1] nil() = [0] and(x1, x2) = [1] x1 + [1] x2 + [0] tt() = [0] isNePal(x1) = [1] x1 + [12] proper(x1) = [0] x1 + [0] ok(x1) = [1] x1 + [5] top(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [1] c_0(x1) = [0] x1 + [0] __^#(x1, x2) = [1] x1 + [1] x2 + [0] c_1() = [0] c_2() = [0] c_3() = [0] c_4() = [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [1] x1 + [0] c_7(x1) = [0] x1 + [0] and^#(x1, x2) = [0] x1 + [0] x2 + [0] c_8(x1) = [0] x1 + [0] isNePal^#(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14() = [0] c_15(x1) = [0] x1 + [0] c_16() = [0] c_17(x1) = [0] x1 + [0] c_18(x1) = [0] x1 + [0] c_19(x1) = [0] x1 + [0] c_20(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_21(x1) = [0] x1 + [0] c_22(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {active(and(tt(), X)) -> mark(X)} and weakly orienting the rules { active(isNePal(__(I, __(P, I)))) -> mark(tt()) , __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2)) , active^#(__(X1, X2)) -> c_6(__^#(X1, active(X2)))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {active(and(tt(), X)) -> mark(X)} Details: Interpretation Functions: active(x1) = [1] x1 + [1] __(x1, x2) = [1] x1 + [1] x2 + [0] mark(x1) = [1] x1 + [1] nil() = [0] and(x1, x2) = [1] x1 + [1] x2 + [8] tt() = [0] isNePal(x1) = [1] x1 + [0] proper(x1) = [0] x1 + [0] ok(x1) = [1] x1 + [0] top(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [5] c_0(x1) = [0] x1 + [0] __^#(x1, x2) = [1] x1 + [1] x2 + [0] c_1() = [0] c_2() = [0] c_3() = [0] c_4() = [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [1] x1 + [2] c_7(x1) = [0] x1 + [0] and^#(x1, x2) = [0] x1 + [0] x2 + [0] c_8(x1) = [0] x1 + [0] isNePal^#(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14() = [0] c_15(x1) = [0] x1 + [0] c_16() = [0] c_17(x1) = [0] x1 + [0] c_18(x1) = [0] x1 + [0] c_19(x1) = [0] x1 + [0] c_20(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_21(x1) = [0] x1 + [0] c_22(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { active(__(X, nil())) -> mark(X) , active(__(nil(), X)) -> mark(X)} and weakly orienting the rules { active(and(tt(), X)) -> mark(X) , active(isNePal(__(I, __(P, I)))) -> mark(tt()) , __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2)) , active^#(__(X1, X2)) -> c_6(__^#(X1, active(X2)))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { active(__(X, nil())) -> mark(X) , active(__(nil(), X)) -> mark(X)} Details: Interpretation Functions: active(x1) = [1] x1 + [1] __(x1, x2) = [1] x1 + [1] x2 + [0] mark(x1) = [1] x1 + [1] nil() = [15] and(x1, x2) = [1] x1 + [1] x2 + [0] tt() = [0] isNePal(x1) = [1] x1 + [0] proper(x1) = [0] x1 + [0] ok(x1) = [1] x1 + [0] top(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [8] c_0(x1) = [0] x1 + [0] __^#(x1, x2) = [1] x1 + [1] x2 + [0] c_1() = [0] c_2() = [0] c_3() = [0] c_4() = [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [1] x1 + [0] c_7(x1) = [0] x1 + [0] and^#(x1, x2) = [0] x1 + [0] x2 + [0] c_8(x1) = [0] x1 + [0] isNePal^#(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14() = [0] c_15(x1) = [0] x1 + [0] c_16() = [0] c_17(x1) = [0] x1 + [0] c_18(x1) = [0] x1 + [0] c_19(x1) = [0] x1 + [0] c_20(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_21(x1) = [0] x1 + [0] c_22(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z)))} and weakly orienting the rules { active(__(X, nil())) -> mark(X) , active(__(nil(), X)) -> mark(X) , active(and(tt(), X)) -> mark(X) , active(isNePal(__(I, __(P, I)))) -> mark(tt()) , __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2)) , active^#(__(X1, X2)) -> c_6(__^#(X1, active(X2)))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z)))} Details: Interpretation Functions: active(x1) = [1] x1 + [8] __(x1, x2) = [1] x1 + [1] x2 + [0] mark(x1) = [1] x1 + [0] nil() = [4] and(x1, x2) = [1] x1 + [1] x2 + [0] tt() = [0] isNePal(x1) = [1] x1 + [0] proper(x1) = [0] x1 + [0] ok(x1) = [1] x1 + [8] top(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [12] c_0(x1) = [0] x1 + [0] __^#(x1, x2) = [1] x1 + [1] x2 + [1] c_1() = [0] c_2() = [0] c_3() = [0] c_4() = [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [1] x1 + [0] c_7(x1) = [0] x1 + [0] and^#(x1, x2) = [0] x1 + [0] x2 + [0] c_8(x1) = [0] x1 + [0] isNePal^#(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14() = [0] c_15(x1) = [0] x1 + [0] c_16() = [0] c_17(x1) = [0] x1 + [0] c_18(x1) = [0] x1 + [0] c_19(x1) = [0] x1 + [0] c_20(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_21(x1) = [0] x1 + [0] c_22(x1) = [0] x1 + [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { active(__(X1, X2)) -> __(active(X1), X2) , active(__(X1, X2)) -> __(X1, active(X2)) , active(and(X1, X2)) -> and(active(X1), X2) , active(isNePal(X)) -> isNePal(active(X)) , __(mark(X1), X2) -> mark(__(X1, X2)) , __(X1, mark(X2)) -> mark(__(X1, X2)) , and(mark(X1), X2) -> mark(and(X1, X2)) , isNePal(mark(X)) -> mark(isNePal(X)) , isNePal(ok(X)) -> ok(isNePal(X))} Weak Rules: { active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z))) , active(__(X, nil())) -> mark(X) , active(__(nil(), X)) -> mark(X) , active(and(tt(), X)) -> mark(X) , active(isNePal(__(I, __(P, I)))) -> mark(tt()) , __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2)) , active^#(__(X1, X2)) -> c_6(__^#(X1, active(X2)))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { active(__(X1, X2)) -> __(active(X1), X2) , active(__(X1, X2)) -> __(X1, active(X2)) , active(and(X1, X2)) -> and(active(X1), X2) , active(isNePal(X)) -> isNePal(active(X)) , __(mark(X1), X2) -> mark(__(X1, X2)) , __(X1, mark(X2)) -> mark(__(X1, X2)) , and(mark(X1), X2) -> mark(and(X1, X2)) , isNePal(mark(X)) -> mark(isNePal(X)) , isNePal(ok(X)) -> ok(isNePal(X))} Weak Rules: { active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z))) , active(__(X, nil())) -> mark(X) , active(__(nil(), X)) -> mark(X) , active(and(tt(), X)) -> mark(X) , active(isNePal(__(I, __(P, I)))) -> mark(tt()) , __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2)) , active^#(__(X1, X2)) -> c_6(__^#(X1, active(X2)))} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { mark_0(3) -> 3 , mark_0(4) -> 3 , mark_0(6) -> 3 , mark_0(9) -> 3 , nil_0() -> 4 , tt_0() -> 6 , ok_0(3) -> 9 , ok_0(4) -> 9 , ok_0(6) -> 9 , ok_0(9) -> 9 , active^#_0(3) -> 11 , active^#_0(4) -> 11 , active^#_0(6) -> 11 , active^#_0(9) -> 11 , __^#_0(3, 3) -> 13 , __^#_0(3, 4) -> 13 , __^#_0(3, 6) -> 13 , __^#_0(3, 9) -> 13 , __^#_0(4, 3) -> 13 , __^#_0(4, 4) -> 13 , __^#_0(4, 6) -> 13 , __^#_0(4, 9) -> 13 , __^#_0(6, 3) -> 13 , __^#_0(6, 4) -> 13 , __^#_0(6, 6) -> 13 , __^#_0(6, 9) -> 13 , __^#_0(9, 3) -> 13 , __^#_0(9, 4) -> 13 , __^#_0(9, 6) -> 13 , __^#_0(9, 9) -> 13} 7) {active^#(__(X1, X2)) -> c_5(__^#(active(X1), X2))} The usable rules for this path are the following: { active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z))) , active(__(X, nil())) -> mark(X) , active(__(nil(), X)) -> mark(X) , active(and(tt(), X)) -> mark(X) , active(isNePal(__(I, __(P, I)))) -> mark(tt()) , active(__(X1, X2)) -> __(active(X1), X2) , active(__(X1, X2)) -> __(X1, active(X2)) , active(and(X1, X2)) -> and(active(X1), X2) , active(isNePal(X)) -> isNePal(active(X)) , __(mark(X1), X2) -> mark(__(X1, X2)) , __(X1, mark(X2)) -> mark(__(X1, X2)) , __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(mark(X1), X2) -> mark(and(X1, X2)) , isNePal(mark(X)) -> mark(isNePal(X)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2)) , isNePal(ok(X)) -> ok(isNePal(X))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z))) , active(__(X, nil())) -> mark(X) , active(__(nil(), X)) -> mark(X) , active(and(tt(), X)) -> mark(X) , active(isNePal(__(I, __(P, I)))) -> mark(tt()) , active(__(X1, X2)) -> __(active(X1), X2) , active(__(X1, X2)) -> __(X1, active(X2)) , active(and(X1, X2)) -> and(active(X1), X2) , active(isNePal(X)) -> isNePal(active(X)) , __(mark(X1), X2) -> mark(__(X1, X2)) , __(X1, mark(X2)) -> mark(__(X1, X2)) , __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(mark(X1), X2) -> mark(and(X1, X2)) , isNePal(mark(X)) -> mark(isNePal(X)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2)) , isNePal(ok(X)) -> ok(isNePal(X)) , active^#(__(X1, X2)) -> c_5(__^#(active(X1), X2))} Details: We apply the weight gap principle, strictly orienting the rules {active^#(__(X1, X2)) -> c_5(__^#(active(X1), X2))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {active^#(__(X1, X2)) -> c_5(__^#(active(X1), X2))} Details: Interpretation Functions: active(x1) = [1] x1 + [1] __(x1, x2) = [1] x1 + [1] x2 + [0] mark(x1) = [1] x1 + [1] nil() = [0] and(x1, x2) = [1] x1 + [1] x2 + [0] tt() = [0] isNePal(x1) = [1] x1 + [0] proper(x1) = [0] x1 + [0] ok(x1) = [1] x1 + [0] top(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [9] c_0(x1) = [0] x1 + [0] __^#(x1, x2) = [1] x1 + [1] x2 + [7] c_1() = [0] c_2() = [0] c_3() = [0] c_4() = [0] c_5(x1) = [1] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] and^#(x1, x2) = [0] x1 + [0] x2 + [0] c_8(x1) = [0] x1 + [0] isNePal^#(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14() = [0] c_15(x1) = [0] x1 + [0] c_16() = [0] c_17(x1) = [0] x1 + [0] c_18(x1) = [0] x1 + [0] c_19(x1) = [0] x1 + [0] c_20(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_21(x1) = [0] x1 + [0] c_22(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2))} and weakly orienting the rules {active^#(__(X1, X2)) -> c_5(__^#(active(X1), X2))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2))} Details: Interpretation Functions: active(x1) = [1] x1 + [1] __(x1, x2) = [1] x1 + [1] x2 + [0] mark(x1) = [1] x1 + [1] nil() = [0] and(x1, x2) = [1] x1 + [1] x2 + [0] tt() = [0] isNePal(x1) = [1] x1 + [0] proper(x1) = [0] x1 + [0] ok(x1) = [1] x1 + [8] top(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [1] c_0(x1) = [0] x1 + [0] __^#(x1, x2) = [1] x1 + [1] x2 + [0] c_1() = [0] c_2() = [0] c_3() = [0] c_4() = [0] c_5(x1) = [1] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] and^#(x1, x2) = [0] x1 + [0] x2 + [0] c_8(x1) = [0] x1 + [0] isNePal^#(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14() = [0] c_15(x1) = [0] x1 + [0] c_16() = [0] c_17(x1) = [0] x1 + [0] c_18(x1) = [0] x1 + [0] c_19(x1) = [0] x1 + [0] c_20(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_21(x1) = [0] x1 + [0] c_22(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {active(isNePal(__(I, __(P, I)))) -> mark(tt())} and weakly orienting the rules { __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2)) , active^#(__(X1, X2)) -> c_5(__^#(active(X1), X2))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {active(isNePal(__(I, __(P, I)))) -> mark(tt())} Details: Interpretation Functions: active(x1) = [1] x1 + [1] __(x1, x2) = [1] x1 + [1] x2 + [0] mark(x1) = [1] x1 + [1] nil() = [0] and(x1, x2) = [1] x1 + [1] x2 + [0] tt() = [0] isNePal(x1) = [1] x1 + [12] proper(x1) = [0] x1 + [0] ok(x1) = [1] x1 + [5] top(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [1] c_0(x1) = [0] x1 + [0] __^#(x1, x2) = [1] x1 + [1] x2 + [0] c_1() = [0] c_2() = [0] c_3() = [0] c_4() = [0] c_5(x1) = [1] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] and^#(x1, x2) = [0] x1 + [0] x2 + [0] c_8(x1) = [0] x1 + [0] isNePal^#(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14() = [0] c_15(x1) = [0] x1 + [0] c_16() = [0] c_17(x1) = [0] x1 + [0] c_18(x1) = [0] x1 + [0] c_19(x1) = [0] x1 + [0] c_20(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_21(x1) = [0] x1 + [0] c_22(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {active(and(tt(), X)) -> mark(X)} and weakly orienting the rules { active(isNePal(__(I, __(P, I)))) -> mark(tt()) , __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2)) , active^#(__(X1, X2)) -> c_5(__^#(active(X1), X2))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {active(and(tt(), X)) -> mark(X)} Details: Interpretation Functions: active(x1) = [1] x1 + [1] __(x1, x2) = [1] x1 + [1] x2 + [0] mark(x1) = [1] x1 + [1] nil() = [0] and(x1, x2) = [1] x1 + [1] x2 + [8] tt() = [0] isNePal(x1) = [1] x1 + [0] proper(x1) = [0] x1 + [0] ok(x1) = [1] x1 + [0] top(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [5] c_0(x1) = [0] x1 + [0] __^#(x1, x2) = [1] x1 + [1] x2 + [0] c_1() = [0] c_2() = [0] c_3() = [0] c_4() = [0] c_5(x1) = [1] x1 + [2] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] and^#(x1, x2) = [0] x1 + [0] x2 + [0] c_8(x1) = [0] x1 + [0] isNePal^#(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14() = [0] c_15(x1) = [0] x1 + [0] c_16() = [0] c_17(x1) = [0] x1 + [0] c_18(x1) = [0] x1 + [0] c_19(x1) = [0] x1 + [0] c_20(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_21(x1) = [0] x1 + [0] c_22(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { active(__(X, nil())) -> mark(X) , active(__(nil(), X)) -> mark(X)} and weakly orienting the rules { active(and(tt(), X)) -> mark(X) , active(isNePal(__(I, __(P, I)))) -> mark(tt()) , __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2)) , active^#(__(X1, X2)) -> c_5(__^#(active(X1), X2))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { active(__(X, nil())) -> mark(X) , active(__(nil(), X)) -> mark(X)} Details: Interpretation Functions: active(x1) = [1] x1 + [1] __(x1, x2) = [1] x1 + [1] x2 + [0] mark(x1) = [1] x1 + [1] nil() = [15] and(x1, x2) = [1] x1 + [1] x2 + [0] tt() = [0] isNePal(x1) = [1] x1 + [0] proper(x1) = [0] x1 + [0] ok(x1) = [1] x1 + [0] top(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [8] c_0(x1) = [0] x1 + [0] __^#(x1, x2) = [1] x1 + [1] x2 + [0] c_1() = [0] c_2() = [0] c_3() = [0] c_4() = [0] c_5(x1) = [1] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] and^#(x1, x2) = [0] x1 + [0] x2 + [0] c_8(x1) = [0] x1 + [0] isNePal^#(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14() = [0] c_15(x1) = [0] x1 + [0] c_16() = [0] c_17(x1) = [0] x1 + [0] c_18(x1) = [0] x1 + [0] c_19(x1) = [0] x1 + [0] c_20(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_21(x1) = [0] x1 + [0] c_22(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z)))} and weakly orienting the rules { active(__(X, nil())) -> mark(X) , active(__(nil(), X)) -> mark(X) , active(and(tt(), X)) -> mark(X) , active(isNePal(__(I, __(P, I)))) -> mark(tt()) , __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2)) , active^#(__(X1, X2)) -> c_5(__^#(active(X1), X2))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z)))} Details: Interpretation Functions: active(x1) = [1] x1 + [8] __(x1, x2) = [1] x1 + [1] x2 + [0] mark(x1) = [1] x1 + [0] nil() = [4] and(x1, x2) = [1] x1 + [1] x2 + [0] tt() = [0] isNePal(x1) = [1] x1 + [0] proper(x1) = [0] x1 + [0] ok(x1) = [1] x1 + [8] top(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [12] c_0(x1) = [0] x1 + [0] __^#(x1, x2) = [1] x1 + [1] x2 + [1] c_1() = [0] c_2() = [0] c_3() = [0] c_4() = [0] c_5(x1) = [1] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] and^#(x1, x2) = [0] x1 + [0] x2 + [0] c_8(x1) = [0] x1 + [0] isNePal^#(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14() = [0] c_15(x1) = [0] x1 + [0] c_16() = [0] c_17(x1) = [0] x1 + [0] c_18(x1) = [0] x1 + [0] c_19(x1) = [0] x1 + [0] c_20(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_21(x1) = [0] x1 + [0] c_22(x1) = [0] x1 + [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { active(__(X1, X2)) -> __(active(X1), X2) , active(__(X1, X2)) -> __(X1, active(X2)) , active(and(X1, X2)) -> and(active(X1), X2) , active(isNePal(X)) -> isNePal(active(X)) , __(mark(X1), X2) -> mark(__(X1, X2)) , __(X1, mark(X2)) -> mark(__(X1, X2)) , and(mark(X1), X2) -> mark(and(X1, X2)) , isNePal(mark(X)) -> mark(isNePal(X)) , isNePal(ok(X)) -> ok(isNePal(X))} Weak Rules: { active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z))) , active(__(X, nil())) -> mark(X) , active(__(nil(), X)) -> mark(X) , active(and(tt(), X)) -> mark(X) , active(isNePal(__(I, __(P, I)))) -> mark(tt()) , __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2)) , active^#(__(X1, X2)) -> c_5(__^#(active(X1), X2))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { active(__(X1, X2)) -> __(active(X1), X2) , active(__(X1, X2)) -> __(X1, active(X2)) , active(and(X1, X2)) -> and(active(X1), X2) , active(isNePal(X)) -> isNePal(active(X)) , __(mark(X1), X2) -> mark(__(X1, X2)) , __(X1, mark(X2)) -> mark(__(X1, X2)) , and(mark(X1), X2) -> mark(and(X1, X2)) , isNePal(mark(X)) -> mark(isNePal(X)) , isNePal(ok(X)) -> ok(isNePal(X))} Weak Rules: { active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z))) , active(__(X, nil())) -> mark(X) , active(__(nil(), X)) -> mark(X) , active(and(tt(), X)) -> mark(X) , active(isNePal(__(I, __(P, I)))) -> mark(tt()) , __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2)) , active^#(__(X1, X2)) -> c_5(__^#(active(X1), X2))} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { mark_0(3) -> 3 , mark_0(4) -> 3 , mark_0(6) -> 3 , mark_0(9) -> 3 , nil_0() -> 4 , tt_0() -> 6 , ok_0(3) -> 9 , ok_0(4) -> 9 , ok_0(6) -> 9 , ok_0(9) -> 9 , active^#_0(3) -> 11 , active^#_0(4) -> 11 , active^#_0(6) -> 11 , active^#_0(9) -> 11 , __^#_0(3, 3) -> 13 , __^#_0(3, 4) -> 13 , __^#_0(3, 6) -> 13 , __^#_0(3, 9) -> 13 , __^#_0(4, 3) -> 13 , __^#_0(4, 4) -> 13 , __^#_0(4, 6) -> 13 , __^#_0(4, 9) -> 13 , __^#_0(6, 3) -> 13 , __^#_0(6, 4) -> 13 , __^#_0(6, 6) -> 13 , __^#_0(6, 9) -> 13 , __^#_0(9, 3) -> 13 , __^#_0(9, 4) -> 13 , __^#_0(9, 6) -> 13 , __^#_0(9, 9) -> 13} 8) { proper^#(__(X1, X2)) -> c_13(__^#(proper(X1), proper(X2))) , __^#(ok(X1), ok(X2)) -> c_18(__^#(X1, X2)) , __^#(X1, mark(X2)) -> c_10(__^#(X1, X2)) , __^#(mark(X1), X2) -> c_9(__^#(X1, X2))} The usable rules for this path are the following: { proper(__(X1, X2)) -> __(proper(X1), proper(X2)) , proper(nil()) -> ok(nil()) , proper(and(X1, X2)) -> and(proper(X1), proper(X2)) , proper(tt()) -> ok(tt()) , proper(isNePal(X)) -> isNePal(proper(X)) , __(mark(X1), X2) -> mark(__(X1, X2)) , __(X1, mark(X2)) -> mark(__(X1, X2)) , __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(mark(X1), X2) -> mark(and(X1, X2)) , isNePal(mark(X)) -> mark(isNePal(X)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2)) , isNePal(ok(X)) -> ok(isNePal(X))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { proper(__(X1, X2)) -> __(proper(X1), proper(X2)) , proper(nil()) -> ok(nil()) , proper(and(X1, X2)) -> and(proper(X1), proper(X2)) , proper(tt()) -> ok(tt()) , proper(isNePal(X)) -> isNePal(proper(X)) , __(mark(X1), X2) -> mark(__(X1, X2)) , __(X1, mark(X2)) -> mark(__(X1, X2)) , __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(mark(X1), X2) -> mark(and(X1, X2)) , isNePal(mark(X)) -> mark(isNePal(X)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2)) , isNePal(ok(X)) -> ok(isNePal(X)) , proper^#(__(X1, X2)) -> c_13(__^#(proper(X1), proper(X2))) , __^#(ok(X1), ok(X2)) -> c_18(__^#(X1, X2)) , __^#(X1, mark(X2)) -> c_10(__^#(X1, X2)) , __^#(mark(X1), X2) -> c_9(__^#(X1, X2))} Details: We apply the weight gap principle, strictly orienting the rules { __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2)) , __^#(ok(X1), ok(X2)) -> c_18(__^#(X1, X2))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2)) , __^#(ok(X1), ok(X2)) -> c_18(__^#(X1, X2))} Details: Interpretation Functions: active(x1) = [0] x1 + [0] __(x1, x2) = [1] x1 + [1] x2 + [0] mark(x1) = [1] x1 + [0] nil() = [0] and(x1, x2) = [1] x1 + [1] x2 + [0] tt() = [0] isNePal(x1) = [1] x1 + [0] proper(x1) = [1] x1 + [1] ok(x1) = [1] x1 + [1] top(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] __^#(x1, x2) = [1] x1 + [1] x2 + [0] c_1() = [0] c_2() = [0] c_3() = [0] c_4() = [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] and^#(x1, x2) = [0] x1 + [0] x2 + [0] c_8(x1) = [0] x1 + [0] isNePal^#(x1) = [0] x1 + [0] c_9(x1) = [1] x1 + [1] c_10(x1) = [1] x1 + [1] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] proper^#(x1) = [1] x1 + [1] c_13(x1) = [1] x1 + [1] c_14() = [0] c_15(x1) = [0] x1 + [0] c_16() = [0] c_17(x1) = [0] x1 + [0] c_18(x1) = [1] x1 + [1] c_19(x1) = [0] x1 + [0] c_20(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_21(x1) = [0] x1 + [0] c_22(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {proper^#(__(X1, X2)) -> c_13(__^#(proper(X1), proper(X2)))} and weakly orienting the rules { __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2)) , __^#(ok(X1), ok(X2)) -> c_18(__^#(X1, X2))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {proper^#(__(X1, X2)) -> c_13(__^#(proper(X1), proper(X2)))} Details: Interpretation Functions: active(x1) = [0] x1 + [0] __(x1, x2) = [1] x1 + [1] x2 + [0] mark(x1) = [1] x1 + [0] nil() = [0] and(x1, x2) = [1] x1 + [1] x2 + [0] tt() = [0] isNePal(x1) = [1] x1 + [0] proper(x1) = [1] x1 + [1] ok(x1) = [1] x1 + [1] top(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] __^#(x1, x2) = [1] x1 + [1] x2 + [0] c_1() = [0] c_2() = [0] c_3() = [0] c_4() = [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] and^#(x1, x2) = [0] x1 + [0] x2 + [0] c_8(x1) = [0] x1 + [0] isNePal^#(x1) = [0] x1 + [0] c_9(x1) = [1] x1 + [1] c_10(x1) = [1] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] proper^#(x1) = [1] x1 + [9] c_13(x1) = [1] x1 + [1] c_14() = [0] c_15(x1) = [0] x1 + [0] c_16() = [0] c_17(x1) = [0] x1 + [0] c_18(x1) = [1] x1 + [0] c_19(x1) = [0] x1 + [0] c_20(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_21(x1) = [0] x1 + [0] c_22(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {__^#(mark(X1), X2) -> c_9(__^#(X1, X2))} and weakly orienting the rules { proper^#(__(X1, X2)) -> c_13(__^#(proper(X1), proper(X2))) , __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2)) , __^#(ok(X1), ok(X2)) -> c_18(__^#(X1, X2))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {__^#(mark(X1), X2) -> c_9(__^#(X1, X2))} Details: Interpretation Functions: active(x1) = [0] x1 + [0] __(x1, x2) = [1] x1 + [1] x2 + [0] mark(x1) = [1] x1 + [8] nil() = [0] and(x1, x2) = [1] x1 + [1] x2 + [0] tt() = [0] isNePal(x1) = [1] x1 + [0] proper(x1) = [1] x1 + [1] ok(x1) = [1] x1 + [1] top(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] __^#(x1, x2) = [1] x1 + [1] x2 + [0] c_1() = [0] c_2() = [0] c_3() = [0] c_4() = [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] and^#(x1, x2) = [0] x1 + [0] x2 + [0] c_8(x1) = [0] x1 + [0] isNePal^#(x1) = [0] x1 + [0] c_9(x1) = [1] x1 + [4] c_10(x1) = [1] x1 + [8] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] proper^#(x1) = [1] x1 + [9] c_13(x1) = [1] x1 + [2] c_14() = [0] c_15(x1) = [0] x1 + [0] c_16() = [0] c_17(x1) = [0] x1 + [0] c_18(x1) = [1] x1 + [1] c_19(x1) = [0] x1 + [0] c_20(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_21(x1) = [0] x1 + [0] c_22(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {__^#(X1, mark(X2)) -> c_10(__^#(X1, X2))} and weakly orienting the rules { __^#(mark(X1), X2) -> c_9(__^#(X1, X2)) , proper^#(__(X1, X2)) -> c_13(__^#(proper(X1), proper(X2))) , __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2)) , __^#(ok(X1), ok(X2)) -> c_18(__^#(X1, X2))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {__^#(X1, mark(X2)) -> c_10(__^#(X1, X2))} Details: Interpretation Functions: active(x1) = [0] x1 + [0] __(x1, x2) = [1] x1 + [1] x2 + [0] mark(x1) = [1] x1 + [8] nil() = [0] and(x1, x2) = [1] x1 + [1] x2 + [0] tt() = [0] isNePal(x1) = [1] x1 + [0] proper(x1) = [1] x1 + [1] ok(x1) = [1] x1 + [1] top(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] __^#(x1, x2) = [1] x1 + [1] x2 + [13] c_1() = [0] c_2() = [0] c_3() = [0] c_4() = [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] and^#(x1, x2) = [0] x1 + [0] x2 + [0] c_8(x1) = [0] x1 + [0] isNePal^#(x1) = [0] x1 + [0] c_9(x1) = [1] x1 + [0] c_10(x1) = [1] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] proper^#(x1) = [1] x1 + [15] c_13(x1) = [1] x1 + [0] c_14() = [0] c_15(x1) = [0] x1 + [0] c_16() = [0] c_17(x1) = [0] x1 + [0] c_18(x1) = [1] x1 + [0] c_19(x1) = [0] x1 + [0] c_20(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_21(x1) = [0] x1 + [0] c_22(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { proper(nil()) -> ok(nil()) , proper(tt()) -> ok(tt())} and weakly orienting the rules { __^#(X1, mark(X2)) -> c_10(__^#(X1, X2)) , __^#(mark(X1), X2) -> c_9(__^#(X1, X2)) , proper^#(__(X1, X2)) -> c_13(__^#(proper(X1), proper(X2))) , __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2)) , __^#(ok(X1), ok(X2)) -> c_18(__^#(X1, X2))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { proper(nil()) -> ok(nil()) , proper(tt()) -> ok(tt())} Details: Interpretation Functions: active(x1) = [0] x1 + [0] __(x1, x2) = [1] x1 + [1] x2 + [0] mark(x1) = [1] x1 + [0] nil() = [0] and(x1, x2) = [1] x1 + [1] x2 + [0] tt() = [0] isNePal(x1) = [1] x1 + [0] proper(x1) = [1] x1 + [4] ok(x1) = [1] x1 + [0] top(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] __^#(x1, x2) = [1] x1 + [1] x2 + [0] c_1() = [0] c_2() = [0] c_3() = [0] c_4() = [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] and^#(x1, x2) = [0] x1 + [0] x2 + [0] c_8(x1) = [0] x1 + [0] isNePal^#(x1) = [0] x1 + [0] c_9(x1) = [1] x1 + [0] c_10(x1) = [1] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] proper^#(x1) = [1] x1 + [9] c_13(x1) = [1] x1 + [1] c_14() = [0] c_15(x1) = [0] x1 + [0] c_16() = [0] c_17(x1) = [0] x1 + [0] c_18(x1) = [1] x1 + [0] c_19(x1) = [0] x1 + [0] c_20(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_21(x1) = [0] x1 + [0] c_22(x1) = [0] x1 + [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { proper(__(X1, X2)) -> __(proper(X1), proper(X2)) , proper(and(X1, X2)) -> and(proper(X1), proper(X2)) , proper(isNePal(X)) -> isNePal(proper(X)) , __(mark(X1), X2) -> mark(__(X1, X2)) , __(X1, mark(X2)) -> mark(__(X1, X2)) , and(mark(X1), X2) -> mark(and(X1, X2)) , isNePal(mark(X)) -> mark(isNePal(X)) , isNePal(ok(X)) -> ok(isNePal(X))} Weak Rules: { proper(nil()) -> ok(nil()) , proper(tt()) -> ok(tt()) , __^#(X1, mark(X2)) -> c_10(__^#(X1, X2)) , __^#(mark(X1), X2) -> c_9(__^#(X1, X2)) , proper^#(__(X1, X2)) -> c_13(__^#(proper(X1), proper(X2))) , __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2)) , __^#(ok(X1), ok(X2)) -> c_18(__^#(X1, X2))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { proper(__(X1, X2)) -> __(proper(X1), proper(X2)) , proper(and(X1, X2)) -> and(proper(X1), proper(X2)) , proper(isNePal(X)) -> isNePal(proper(X)) , __(mark(X1), X2) -> mark(__(X1, X2)) , __(X1, mark(X2)) -> mark(__(X1, X2)) , and(mark(X1), X2) -> mark(and(X1, X2)) , isNePal(mark(X)) -> mark(isNePal(X)) , isNePal(ok(X)) -> ok(isNePal(X))} Weak Rules: { proper(nil()) -> ok(nil()) , proper(tt()) -> ok(tt()) , __^#(X1, mark(X2)) -> c_10(__^#(X1, X2)) , __^#(mark(X1), X2) -> c_9(__^#(X1, X2)) , proper^#(__(X1, X2)) -> c_13(__^#(proper(X1), proper(X2))) , __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2)) , __^#(ok(X1), ok(X2)) -> c_18(__^#(X1, X2))} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { mark_0(2) -> 2 , nil_0() -> 2 , tt_0() -> 2 , ok_0(2) -> 2 , __^#_0(2, 2) -> 1 , c_9_0(1) -> 1 , c_10_0(1) -> 1 , proper^#_0(2) -> 1 , c_18_0(1) -> 1} 9) {active^#(and(X1, X2)) -> c_7(and^#(active(X1), X2))} The usable rules for this path are the following: { active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z))) , active(__(X, nil())) -> mark(X) , active(__(nil(), X)) -> mark(X) , active(and(tt(), X)) -> mark(X) , active(isNePal(__(I, __(P, I)))) -> mark(tt()) , active(__(X1, X2)) -> __(active(X1), X2) , active(__(X1, X2)) -> __(X1, active(X2)) , active(and(X1, X2)) -> and(active(X1), X2) , active(isNePal(X)) -> isNePal(active(X)) , __(mark(X1), X2) -> mark(__(X1, X2)) , __(X1, mark(X2)) -> mark(__(X1, X2)) , __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(mark(X1), X2) -> mark(and(X1, X2)) , isNePal(mark(X)) -> mark(isNePal(X)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2)) , isNePal(ok(X)) -> ok(isNePal(X))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z))) , active(__(X, nil())) -> mark(X) , active(__(nil(), X)) -> mark(X) , active(and(tt(), X)) -> mark(X) , active(isNePal(__(I, __(P, I)))) -> mark(tt()) , active(__(X1, X2)) -> __(active(X1), X2) , active(__(X1, X2)) -> __(X1, active(X2)) , active(and(X1, X2)) -> and(active(X1), X2) , active(isNePal(X)) -> isNePal(active(X)) , __(mark(X1), X2) -> mark(__(X1, X2)) , __(X1, mark(X2)) -> mark(__(X1, X2)) , __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(mark(X1), X2) -> mark(and(X1, X2)) , isNePal(mark(X)) -> mark(isNePal(X)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2)) , isNePal(ok(X)) -> ok(isNePal(X)) , active^#(and(X1, X2)) -> c_7(and^#(active(X1), X2))} Details: We apply the weight gap principle, strictly orienting the rules { __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2))} Details: Interpretation Functions: active(x1) = [1] x1 + [1] __(x1, x2) = [1] x1 + [1] x2 + [0] mark(x1) = [1] x1 + [1] nil() = [0] and(x1, x2) = [1] x1 + [1] x2 + [0] tt() = [0] isNePal(x1) = [1] x1 + [0] proper(x1) = [0] x1 + [0] ok(x1) = [1] x1 + [1] top(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [1] c_0(x1) = [0] x1 + [0] __^#(x1, x2) = [0] x1 + [0] x2 + [0] c_1() = [0] c_2() = [0] c_3() = [0] c_4() = [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [1] x1 + [1] and^#(x1, x2) = [1] x1 + [1] x2 + [0] c_8(x1) = [0] x1 + [0] isNePal^#(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14() = [0] c_15(x1) = [0] x1 + [0] c_16() = [0] c_17(x1) = [0] x1 + [0] c_18(x1) = [0] x1 + [0] c_19(x1) = [0] x1 + [0] c_20(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_21(x1) = [0] x1 + [0] c_22(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {active^#(and(X1, X2)) -> c_7(and^#(active(X1), X2))} and weakly orienting the rules { __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {active^#(and(X1, X2)) -> c_7(and^#(active(X1), X2))} Details: Interpretation Functions: active(x1) = [1] x1 + [1] __(x1, x2) = [1] x1 + [1] x2 + [0] mark(x1) = [1] x1 + [1] nil() = [0] and(x1, x2) = [1] x1 + [1] x2 + [0] tt() = [0] isNePal(x1) = [1] x1 + [0] proper(x1) = [0] x1 + [0] ok(x1) = [1] x1 + [0] top(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [9] c_0(x1) = [0] x1 + [0] __^#(x1, x2) = [0] x1 + [0] x2 + [0] c_1() = [0] c_2() = [0] c_3() = [0] c_4() = [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [1] x1 + [0] and^#(x1, x2) = [1] x1 + [1] x2 + [0] c_8(x1) = [0] x1 + [0] isNePal^#(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14() = [0] c_15(x1) = [0] x1 + [0] c_16() = [0] c_17(x1) = [0] x1 + [0] c_18(x1) = [0] x1 + [0] c_19(x1) = [0] x1 + [0] c_20(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_21(x1) = [0] x1 + [0] c_22(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { active(__(X, nil())) -> mark(X) , active(__(nil(), X)) -> mark(X) , active(isNePal(__(I, __(P, I)))) -> mark(tt())} and weakly orienting the rules { active^#(and(X1, X2)) -> c_7(and^#(active(X1), X2)) , __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { active(__(X, nil())) -> mark(X) , active(__(nil(), X)) -> mark(X) , active(isNePal(__(I, __(P, I)))) -> mark(tt())} Details: Interpretation Functions: active(x1) = [1] x1 + [1] __(x1, x2) = [1] x1 + [1] x2 + [0] mark(x1) = [1] x1 + [1] nil() = [4] and(x1, x2) = [1] x1 + [1] x2 + [0] tt() = [0] isNePal(x1) = [1] x1 + [12] proper(x1) = [0] x1 + [0] ok(x1) = [1] x1 + [4] top(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [1] c_0(x1) = [0] x1 + [0] __^#(x1, x2) = [0] x1 + [0] x2 + [0] c_1() = [0] c_2() = [0] c_3() = [0] c_4() = [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [1] x1 + [0] and^#(x1, x2) = [1] x1 + [1] x2 + [0] c_8(x1) = [0] x1 + [0] isNePal^#(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14() = [0] c_15(x1) = [0] x1 + [0] c_16() = [0] c_17(x1) = [0] x1 + [0] c_18(x1) = [0] x1 + [0] c_19(x1) = [0] x1 + [0] c_20(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_21(x1) = [0] x1 + [0] c_22(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {active(and(tt(), X)) -> mark(X)} and weakly orienting the rules { active(__(X, nil())) -> mark(X) , active(__(nil(), X)) -> mark(X) , active(isNePal(__(I, __(P, I)))) -> mark(tt()) , active^#(and(X1, X2)) -> c_7(and^#(active(X1), X2)) , __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {active(and(tt(), X)) -> mark(X)} Details: Interpretation Functions: active(x1) = [1] x1 + [1] __(x1, x2) = [1] x1 + [1] x2 + [0] mark(x1) = [1] x1 + [1] nil() = [15] and(x1, x2) = [1] x1 + [1] x2 + [8] tt() = [0] isNePal(x1) = [1] x1 + [0] proper(x1) = [0] x1 + [0] ok(x1) = [1] x1 + [0] top(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [9] c_0(x1) = [0] x1 + [0] __^#(x1, x2) = [0] x1 + [0] x2 + [0] c_1() = [0] c_2() = [0] c_3() = [0] c_4() = [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [1] x1 + [15] and^#(x1, x2) = [1] x1 + [1] x2 + [0] c_8(x1) = [0] x1 + [0] isNePal^#(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14() = [0] c_15(x1) = [0] x1 + [0] c_16() = [0] c_17(x1) = [0] x1 + [0] c_18(x1) = [0] x1 + [0] c_19(x1) = [0] x1 + [0] c_20(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_21(x1) = [0] x1 + [0] c_22(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z)))} and weakly orienting the rules { active(and(tt(), X)) -> mark(X) , active(__(X, nil())) -> mark(X) , active(__(nil(), X)) -> mark(X) , active(isNePal(__(I, __(P, I)))) -> mark(tt()) , active^#(and(X1, X2)) -> c_7(and^#(active(X1), X2)) , __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z)))} Details: Interpretation Functions: active(x1) = [1] x1 + [1] __(x1, x2) = [1] x1 + [1] x2 + [0] mark(x1) = [1] x1 + [0] nil() = [15] and(x1, x2) = [1] x1 + [1] x2 + [0] tt() = [0] isNePal(x1) = [1] x1 + [0] proper(x1) = [0] x1 + [0] ok(x1) = [1] x1 + [0] top(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [5] c_0(x1) = [0] x1 + [0] __^#(x1, x2) = [0] x1 + [0] x2 + [0] c_1() = [0] c_2() = [0] c_3() = [0] c_4() = [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [1] x1 + [0] and^#(x1, x2) = [1] x1 + [1] x2 + [0] c_8(x1) = [0] x1 + [0] isNePal^#(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14() = [0] c_15(x1) = [0] x1 + [0] c_16() = [0] c_17(x1) = [0] x1 + [0] c_18(x1) = [0] x1 + [0] c_19(x1) = [0] x1 + [0] c_20(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_21(x1) = [0] x1 + [0] c_22(x1) = [0] x1 + [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { active(__(X1, X2)) -> __(active(X1), X2) , active(__(X1, X2)) -> __(X1, active(X2)) , active(and(X1, X2)) -> and(active(X1), X2) , active(isNePal(X)) -> isNePal(active(X)) , __(mark(X1), X2) -> mark(__(X1, X2)) , __(X1, mark(X2)) -> mark(__(X1, X2)) , and(mark(X1), X2) -> mark(and(X1, X2)) , isNePal(mark(X)) -> mark(isNePal(X)) , isNePal(ok(X)) -> ok(isNePal(X))} Weak Rules: { active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z))) , active(and(tt(), X)) -> mark(X) , active(__(X, nil())) -> mark(X) , active(__(nil(), X)) -> mark(X) , active(isNePal(__(I, __(P, I)))) -> mark(tt()) , active^#(and(X1, X2)) -> c_7(and^#(active(X1), X2)) , __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { active(__(X1, X2)) -> __(active(X1), X2) , active(__(X1, X2)) -> __(X1, active(X2)) , active(and(X1, X2)) -> and(active(X1), X2) , active(isNePal(X)) -> isNePal(active(X)) , __(mark(X1), X2) -> mark(__(X1, X2)) , __(X1, mark(X2)) -> mark(__(X1, X2)) , and(mark(X1), X2) -> mark(and(X1, X2)) , isNePal(mark(X)) -> mark(isNePal(X)) , isNePal(ok(X)) -> ok(isNePal(X))} Weak Rules: { active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z))) , active(and(tt(), X)) -> mark(X) , active(__(X, nil())) -> mark(X) , active(__(nil(), X)) -> mark(X) , active(isNePal(__(I, __(P, I)))) -> mark(tt()) , active^#(and(X1, X2)) -> c_7(and^#(active(X1), X2)) , __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2))} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { mark_0(3) -> 3 , mark_0(4) -> 3 , mark_0(6) -> 3 , mark_0(9) -> 3 , nil_0() -> 4 , tt_0() -> 6 , ok_0(3) -> 9 , ok_0(4) -> 9 , ok_0(6) -> 9 , ok_0(9) -> 9 , active^#_0(3) -> 11 , active^#_0(4) -> 11 , active^#_0(6) -> 11 , active^#_0(9) -> 11 , and^#_0(3, 3) -> 21 , and^#_0(3, 4) -> 21 , and^#_0(3, 6) -> 21 , and^#_0(3, 9) -> 21 , and^#_0(4, 3) -> 21 , and^#_0(4, 4) -> 21 , and^#_0(4, 6) -> 21 , and^#_0(4, 9) -> 21 , and^#_0(6, 3) -> 21 , and^#_0(6, 4) -> 21 , and^#_0(6, 6) -> 21 , and^#_0(6, 9) -> 21 , and^#_0(9, 3) -> 21 , and^#_0(9, 4) -> 21 , and^#_0(9, 6) -> 21 , and^#_0(9, 9) -> 21} 10) {active^#(isNePal(X)) -> c_8(isNePal^#(active(X)))} The usable rules for this path are the following: { active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z))) , active(__(X, nil())) -> mark(X) , active(__(nil(), X)) -> mark(X) , active(and(tt(), X)) -> mark(X) , active(isNePal(__(I, __(P, I)))) -> mark(tt()) , active(__(X1, X2)) -> __(active(X1), X2) , active(__(X1, X2)) -> __(X1, active(X2)) , active(and(X1, X2)) -> and(active(X1), X2) , active(isNePal(X)) -> isNePal(active(X)) , __(mark(X1), X2) -> mark(__(X1, X2)) , __(X1, mark(X2)) -> mark(__(X1, X2)) , __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(mark(X1), X2) -> mark(and(X1, X2)) , isNePal(mark(X)) -> mark(isNePal(X)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2)) , isNePal(ok(X)) -> ok(isNePal(X))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z))) , active(__(X, nil())) -> mark(X) , active(__(nil(), X)) -> mark(X) , active(and(tt(), X)) -> mark(X) , active(isNePal(__(I, __(P, I)))) -> mark(tt()) , active(__(X1, X2)) -> __(active(X1), X2) , active(__(X1, X2)) -> __(X1, active(X2)) , active(and(X1, X2)) -> and(active(X1), X2) , active(isNePal(X)) -> isNePal(active(X)) , __(mark(X1), X2) -> mark(__(X1, X2)) , __(X1, mark(X2)) -> mark(__(X1, X2)) , __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(mark(X1), X2) -> mark(and(X1, X2)) , isNePal(mark(X)) -> mark(isNePal(X)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2)) , isNePal(ok(X)) -> ok(isNePal(X)) , active^#(isNePal(X)) -> c_8(isNePal^#(active(X)))} Details: We apply the weight gap principle, strictly orienting the rules {active(and(tt(), X)) -> mark(X)} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {active(and(tt(), X)) -> mark(X)} Details: Interpretation Functions: active(x1) = [1] x1 + [1] __(x1, x2) = [1] x1 + [1] x2 + [0] mark(x1) = [1] x1 + [1] nil() = [0] and(x1, x2) = [1] x1 + [1] x2 + [0] tt() = [8] isNePal(x1) = [1] x1 + [0] proper(x1) = [0] x1 + [0] ok(x1) = [1] x1 + [0] top(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [1] c_0(x1) = [0] x1 + [0] __^#(x1, x2) = [0] x1 + [0] x2 + [0] c_1() = [0] c_2() = [0] c_3() = [0] c_4() = [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] and^#(x1, x2) = [0] x1 + [0] x2 + [0] c_8(x1) = [1] x1 + [0] isNePal^#(x1) = [1] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14() = [0] c_15(x1) = [0] x1 + [0] c_16() = [0] c_17(x1) = [0] x1 + [0] c_18(x1) = [0] x1 + [0] c_19(x1) = [0] x1 + [0] c_20(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_21(x1) = [0] x1 + [0] c_22(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2))} and weakly orienting the rules {active(and(tt(), X)) -> mark(X)} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2))} Details: Interpretation Functions: active(x1) = [1] x1 + [1] __(x1, x2) = [1] x1 + [1] x2 + [0] mark(x1) = [1] x1 + [1] nil() = [0] and(x1, x2) = [1] x1 + [1] x2 + [4] tt() = [0] isNePal(x1) = [1] x1 + [0] proper(x1) = [0] x1 + [0] ok(x1) = [1] x1 + [4] top(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [1] c_0(x1) = [0] x1 + [0] __^#(x1, x2) = [0] x1 + [0] x2 + [0] c_1() = [0] c_2() = [0] c_3() = [0] c_4() = [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] and^#(x1, x2) = [0] x1 + [0] x2 + [0] c_8(x1) = [1] x1 + [0] isNePal^#(x1) = [1] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14() = [0] c_15(x1) = [0] x1 + [0] c_16() = [0] c_17(x1) = [0] x1 + [0] c_18(x1) = [0] x1 + [0] c_19(x1) = [0] x1 + [0] c_20(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_21(x1) = [0] x1 + [0] c_22(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { active(isNePal(__(I, __(P, I)))) -> mark(tt()) , active^#(isNePal(X)) -> c_8(isNePal^#(active(X)))} and weakly orienting the rules { __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2)) , active(and(tt(), X)) -> mark(X)} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { active(isNePal(__(I, __(P, I)))) -> mark(tt()) , active^#(isNePal(X)) -> c_8(isNePal^#(active(X)))} Details: Interpretation Functions: active(x1) = [1] x1 + [1] __(x1, x2) = [1] x1 + [1] x2 + [0] mark(x1) = [1] x1 + [1] nil() = [0] and(x1, x2) = [1] x1 + [1] x2 + [0] tt() = [2] isNePal(x1) = [1] x1 + [6] proper(x1) = [0] x1 + [0] ok(x1) = [1] x1 + [10] top(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [5] c_0(x1) = [0] x1 + [0] __^#(x1, x2) = [0] x1 + [0] x2 + [0] c_1() = [0] c_2() = [0] c_3() = [0] c_4() = [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] and^#(x1, x2) = [0] x1 + [0] x2 + [0] c_8(x1) = [1] x1 + [7] isNePal^#(x1) = [1] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14() = [0] c_15(x1) = [0] x1 + [0] c_16() = [0] c_17(x1) = [0] x1 + [0] c_18(x1) = [0] x1 + [0] c_19(x1) = [0] x1 + [0] c_20(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_21(x1) = [0] x1 + [0] c_22(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { active(__(X, nil())) -> mark(X) , active(__(nil(), X)) -> mark(X)} and weakly orienting the rules { active(isNePal(__(I, __(P, I)))) -> mark(tt()) , active^#(isNePal(X)) -> c_8(isNePal^#(active(X))) , __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2)) , active(and(tt(), X)) -> mark(X)} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { active(__(X, nil())) -> mark(X) , active(__(nil(), X)) -> mark(X)} Details: Interpretation Functions: active(x1) = [1] x1 + [1] __(x1, x2) = [1] x1 + [1] x2 + [0] mark(x1) = [1] x1 + [1] nil() = [15] and(x1, x2) = [1] x1 + [1] x2 + [1] tt() = [0] isNePal(x1) = [1] x1 + [0] proper(x1) = [0] x1 + [0] ok(x1) = [1] x1 + [0] top(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [9] c_0(x1) = [0] x1 + [0] __^#(x1, x2) = [0] x1 + [0] x2 + [0] c_1() = [0] c_2() = [0] c_3() = [0] c_4() = [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] and^#(x1, x2) = [0] x1 + [0] x2 + [0] c_8(x1) = [1] x1 + [0] isNePal^#(x1) = [1] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14() = [0] c_15(x1) = [0] x1 + [0] c_16() = [0] c_17(x1) = [0] x1 + [0] c_18(x1) = [0] x1 + [0] c_19(x1) = [0] x1 + [0] c_20(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_21(x1) = [0] x1 + [0] c_22(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z)))} and weakly orienting the rules { active(__(X, nil())) -> mark(X) , active(__(nil(), X)) -> mark(X) , active(isNePal(__(I, __(P, I)))) -> mark(tt()) , active^#(isNePal(X)) -> c_8(isNePal^#(active(X))) , __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2)) , active(and(tt(), X)) -> mark(X)} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z)))} Details: Interpretation Functions: active(x1) = [1] x1 + [1] __(x1, x2) = [1] x1 + [1] x2 + [11] mark(x1) = [1] x1 + [0] nil() = [5] and(x1, x2) = [1] x1 + [1] x2 + [0] tt() = [0] isNePal(x1) = [1] x1 + [0] proper(x1) = [0] x1 + [0] ok(x1) = [1] x1 + [0] top(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [3] c_0(x1) = [0] x1 + [0] __^#(x1, x2) = [0] x1 + [0] x2 + [0] c_1() = [0] c_2() = [0] c_3() = [0] c_4() = [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] and^#(x1, x2) = [0] x1 + [0] x2 + [0] c_8(x1) = [1] x1 + [0] isNePal^#(x1) = [1] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14() = [0] c_15(x1) = [0] x1 + [0] c_16() = [0] c_17(x1) = [0] x1 + [0] c_18(x1) = [0] x1 + [0] c_19(x1) = [0] x1 + [0] c_20(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_21(x1) = [0] x1 + [0] c_22(x1) = [0] x1 + [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { active(__(X1, X2)) -> __(active(X1), X2) , active(__(X1, X2)) -> __(X1, active(X2)) , active(and(X1, X2)) -> and(active(X1), X2) , active(isNePal(X)) -> isNePal(active(X)) , __(mark(X1), X2) -> mark(__(X1, X2)) , __(X1, mark(X2)) -> mark(__(X1, X2)) , and(mark(X1), X2) -> mark(and(X1, X2)) , isNePal(mark(X)) -> mark(isNePal(X)) , isNePal(ok(X)) -> ok(isNePal(X))} Weak Rules: { active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z))) , active(__(X, nil())) -> mark(X) , active(__(nil(), X)) -> mark(X) , active(isNePal(__(I, __(P, I)))) -> mark(tt()) , active^#(isNePal(X)) -> c_8(isNePal^#(active(X))) , __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2)) , active(and(tt(), X)) -> mark(X)} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { active(__(X1, X2)) -> __(active(X1), X2) , active(__(X1, X2)) -> __(X1, active(X2)) , active(and(X1, X2)) -> and(active(X1), X2) , active(isNePal(X)) -> isNePal(active(X)) , __(mark(X1), X2) -> mark(__(X1, X2)) , __(X1, mark(X2)) -> mark(__(X1, X2)) , and(mark(X1), X2) -> mark(and(X1, X2)) , isNePal(mark(X)) -> mark(isNePal(X)) , isNePal(ok(X)) -> ok(isNePal(X))} Weak Rules: { active(__(__(X, Y), Z)) -> mark(__(X, __(Y, Z))) , active(__(X, nil())) -> mark(X) , active(__(nil(), X)) -> mark(X) , active(isNePal(__(I, __(P, I)))) -> mark(tt()) , active^#(isNePal(X)) -> c_8(isNePal^#(active(X))) , __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2)) , active(and(tt(), X)) -> mark(X)} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { mark_0(3) -> 3 , mark_0(4) -> 3 , mark_0(6) -> 3 , mark_0(9) -> 3 , nil_0() -> 4 , tt_0() -> 6 , ok_0(3) -> 9 , ok_0(4) -> 9 , ok_0(6) -> 9 , ok_0(9) -> 9 , active^#_0(3) -> 11 , active^#_0(4) -> 11 , active^#_0(6) -> 11 , active^#_0(9) -> 11 , isNePal^#_0(3) -> 23 , isNePal^#_0(4) -> 23 , isNePal^#_0(6) -> 23 , isNePal^#_0(9) -> 23} 11) { proper^#(isNePal(X)) -> c_17(isNePal^#(proper(X))) , isNePal^#(ok(X)) -> c_20(isNePal^#(X)) , isNePal^#(mark(X)) -> c_12(isNePal^#(X))} The usable rules for this path are the following: { proper(__(X1, X2)) -> __(proper(X1), proper(X2)) , proper(nil()) -> ok(nil()) , proper(and(X1, X2)) -> and(proper(X1), proper(X2)) , proper(tt()) -> ok(tt()) , proper(isNePal(X)) -> isNePal(proper(X)) , __(mark(X1), X2) -> mark(__(X1, X2)) , __(X1, mark(X2)) -> mark(__(X1, X2)) , __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(mark(X1), X2) -> mark(and(X1, X2)) , isNePal(mark(X)) -> mark(isNePal(X)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2)) , isNePal(ok(X)) -> ok(isNePal(X))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { proper(__(X1, X2)) -> __(proper(X1), proper(X2)) , proper(nil()) -> ok(nil()) , proper(and(X1, X2)) -> and(proper(X1), proper(X2)) , proper(tt()) -> ok(tt()) , proper(isNePal(X)) -> isNePal(proper(X)) , __(mark(X1), X2) -> mark(__(X1, X2)) , __(X1, mark(X2)) -> mark(__(X1, X2)) , __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(mark(X1), X2) -> mark(and(X1, X2)) , isNePal(mark(X)) -> mark(isNePal(X)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2)) , isNePal(ok(X)) -> ok(isNePal(X)) , proper^#(isNePal(X)) -> c_17(isNePal^#(proper(X))) , isNePal^#(ok(X)) -> c_20(isNePal^#(X)) , isNePal^#(mark(X)) -> c_12(isNePal^#(X))} Details: We apply the weight gap principle, strictly orienting the rules { __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2))} Details: Interpretation Functions: active(x1) = [0] x1 + [0] __(x1, x2) = [1] x1 + [1] x2 + [0] mark(x1) = [1] x1 + [0] nil() = [0] and(x1, x2) = [1] x1 + [1] x2 + [0] tt() = [0] isNePal(x1) = [1] x1 + [0] proper(x1) = [1] x1 + [1] ok(x1) = [1] x1 + [1] top(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] __^#(x1, x2) = [0] x1 + [0] x2 + [0] c_1() = [0] c_2() = [0] c_3() = [0] c_4() = [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] and^#(x1, x2) = [0] x1 + [0] x2 + [0] c_8(x1) = [0] x1 + [0] isNePal^#(x1) = [1] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [1] x1 + [1] proper^#(x1) = [1] x1 + [1] c_13(x1) = [0] x1 + [0] c_14() = [0] c_15(x1) = [0] x1 + [0] c_16() = [0] c_17(x1) = [1] x1 + [0] c_18(x1) = [0] x1 + [0] c_19(x1) = [0] x1 + [0] c_20(x1) = [1] x1 + [1] top^#(x1) = [0] x1 + [0] c_21(x1) = [0] x1 + [0] c_22(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {isNePal^#(ok(X)) -> c_20(isNePal^#(X))} and weakly orienting the rules { __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {isNePal^#(ok(X)) -> c_20(isNePal^#(X))} Details: Interpretation Functions: active(x1) = [0] x1 + [0] __(x1, x2) = [1] x1 + [1] x2 + [0] mark(x1) = [1] x1 + [0] nil() = [0] and(x1, x2) = [1] x1 + [1] x2 + [0] tt() = [0] isNePal(x1) = [1] x1 + [0] proper(x1) = [1] x1 + [1] ok(x1) = [1] x1 + [1] top(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] __^#(x1, x2) = [0] x1 + [0] x2 + [0] c_1() = [0] c_2() = [0] c_3() = [0] c_4() = [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] and^#(x1, x2) = [0] x1 + [0] x2 + [0] c_8(x1) = [0] x1 + [0] isNePal^#(x1) = [1] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [1] x1 + [1] proper^#(x1) = [1] x1 + [1] c_13(x1) = [0] x1 + [0] c_14() = [0] c_15(x1) = [0] x1 + [0] c_16() = [0] c_17(x1) = [1] x1 + [0] c_18(x1) = [0] x1 + [0] c_19(x1) = [0] x1 + [0] c_20(x1) = [1] x1 + [0] top^#(x1) = [0] x1 + [0] c_21(x1) = [0] x1 + [0] c_22(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {proper^#(isNePal(X)) -> c_17(isNePal^#(proper(X)))} and weakly orienting the rules { isNePal^#(ok(X)) -> c_20(isNePal^#(X)) , __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {proper^#(isNePal(X)) -> c_17(isNePal^#(proper(X)))} Details: Interpretation Functions: active(x1) = [0] x1 + [0] __(x1, x2) = [1] x1 + [1] x2 + [0] mark(x1) = [1] x1 + [0] nil() = [0] and(x1, x2) = [1] x1 + [1] x2 + [0] tt() = [0] isNePal(x1) = [1] x1 + [0] proper(x1) = [1] x1 + [1] ok(x1) = [1] x1 + [1] top(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] __^#(x1, x2) = [0] x1 + [0] x2 + [0] c_1() = [0] c_2() = [0] c_3() = [0] c_4() = [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] and^#(x1, x2) = [0] x1 + [0] x2 + [0] c_8(x1) = [0] x1 + [0] isNePal^#(x1) = [1] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [1] x1 + [1] proper^#(x1) = [1] x1 + [9] c_13(x1) = [0] x1 + [0] c_14() = [0] c_15(x1) = [0] x1 + [0] c_16() = [0] c_17(x1) = [1] x1 + [0] c_18(x1) = [0] x1 + [0] c_19(x1) = [0] x1 + [0] c_20(x1) = [1] x1 + [1] top^#(x1) = [0] x1 + [0] c_21(x1) = [0] x1 + [0] c_22(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {isNePal^#(mark(X)) -> c_12(isNePal^#(X))} and weakly orienting the rules { proper^#(isNePal(X)) -> c_17(isNePal^#(proper(X))) , isNePal^#(ok(X)) -> c_20(isNePal^#(X)) , __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {isNePal^#(mark(X)) -> c_12(isNePal^#(X))} Details: Interpretation Functions: active(x1) = [0] x1 + [0] __(x1, x2) = [1] x1 + [1] x2 + [0] mark(x1) = [1] x1 + [8] nil() = [0] and(x1, x2) = [1] x1 + [1] x2 + [0] tt() = [0] isNePal(x1) = [1] x1 + [0] proper(x1) = [1] x1 + [1] ok(x1) = [1] x1 + [1] top(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] __^#(x1, x2) = [0] x1 + [0] x2 + [0] c_1() = [0] c_2() = [0] c_3() = [0] c_4() = [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] and^#(x1, x2) = [0] x1 + [0] x2 + [0] c_8(x1) = [0] x1 + [0] isNePal^#(x1) = [1] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [1] x1 + [0] proper^#(x1) = [1] x1 + [9] c_13(x1) = [0] x1 + [0] c_14() = [0] c_15(x1) = [0] x1 + [0] c_16() = [0] c_17(x1) = [1] x1 + [7] c_18(x1) = [0] x1 + [0] c_19(x1) = [0] x1 + [0] c_20(x1) = [1] x1 + [1] top^#(x1) = [0] x1 + [0] c_21(x1) = [0] x1 + [0] c_22(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { proper(nil()) -> ok(nil()) , proper(tt()) -> ok(tt())} and weakly orienting the rules { isNePal^#(mark(X)) -> c_12(isNePal^#(X)) , proper^#(isNePal(X)) -> c_17(isNePal^#(proper(X))) , isNePal^#(ok(X)) -> c_20(isNePal^#(X)) , __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { proper(nil()) -> ok(nil()) , proper(tt()) -> ok(tt())} Details: Interpretation Functions: active(x1) = [0] x1 + [0] __(x1, x2) = [1] x1 + [1] x2 + [0] mark(x1) = [1] x1 + [0] nil() = [15] and(x1, x2) = [1] x1 + [1] x2 + [0] tt() = [0] isNePal(x1) = [1] x1 + [8] proper(x1) = [1] x1 + [1] ok(x1) = [1] x1 + [0] top(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] __^#(x1, x2) = [0] x1 + [0] x2 + [0] c_1() = [0] c_2() = [0] c_3() = [0] c_4() = [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] and^#(x1, x2) = [0] x1 + [0] x2 + [0] c_8(x1) = [0] x1 + [0] isNePal^#(x1) = [1] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [1] x1 + [0] proper^#(x1) = [1] x1 + [9] c_13(x1) = [0] x1 + [0] c_14() = [0] c_15(x1) = [0] x1 + [0] c_16() = [0] c_17(x1) = [1] x1 + [0] c_18(x1) = [0] x1 + [0] c_19(x1) = [0] x1 + [0] c_20(x1) = [1] x1 + [0] top^#(x1) = [0] x1 + [0] c_21(x1) = [0] x1 + [0] c_22(x1) = [0] x1 + [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { proper(__(X1, X2)) -> __(proper(X1), proper(X2)) , proper(and(X1, X2)) -> and(proper(X1), proper(X2)) , proper(isNePal(X)) -> isNePal(proper(X)) , __(mark(X1), X2) -> mark(__(X1, X2)) , __(X1, mark(X2)) -> mark(__(X1, X2)) , and(mark(X1), X2) -> mark(and(X1, X2)) , isNePal(mark(X)) -> mark(isNePal(X)) , isNePal(ok(X)) -> ok(isNePal(X))} Weak Rules: { proper(nil()) -> ok(nil()) , proper(tt()) -> ok(tt()) , isNePal^#(mark(X)) -> c_12(isNePal^#(X)) , proper^#(isNePal(X)) -> c_17(isNePal^#(proper(X))) , isNePal^#(ok(X)) -> c_20(isNePal^#(X)) , __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { proper(__(X1, X2)) -> __(proper(X1), proper(X2)) , proper(and(X1, X2)) -> and(proper(X1), proper(X2)) , proper(isNePal(X)) -> isNePal(proper(X)) , __(mark(X1), X2) -> mark(__(X1, X2)) , __(X1, mark(X2)) -> mark(__(X1, X2)) , and(mark(X1), X2) -> mark(and(X1, X2)) , isNePal(mark(X)) -> mark(isNePal(X)) , isNePal(ok(X)) -> ok(isNePal(X))} Weak Rules: { proper(nil()) -> ok(nil()) , proper(tt()) -> ok(tt()) , isNePal^#(mark(X)) -> c_12(isNePal^#(X)) , proper^#(isNePal(X)) -> c_17(isNePal^#(proper(X))) , isNePal^#(ok(X)) -> c_20(isNePal^#(X)) , __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2))} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { mark_0(3) -> 3 , mark_0(4) -> 3 , mark_0(6) -> 3 , mark_0(9) -> 3 , nil_0() -> 4 , tt_0() -> 6 , ok_0(3) -> 9 , ok_0(4) -> 9 , ok_0(6) -> 9 , ok_0(9) -> 9 , isNePal^#_0(3) -> 23 , isNePal^#_0(4) -> 23 , isNePal^#_0(6) -> 23 , isNePal^#_0(9) -> 23 , c_12_0(23) -> 23 , proper^#_0(3) -> 28 , proper^#_0(4) -> 28 , proper^#_0(6) -> 28 , proper^#_0(9) -> 28 , c_20_0(23) -> 23} 12) { proper^#(and(X1, X2)) -> c_15(and^#(proper(X1), proper(X2))) , and^#(ok(X1), ok(X2)) -> c_19(and^#(X1, X2)) , and^#(mark(X1), X2) -> c_11(and^#(X1, X2))} The usable rules for this path are the following: { proper(__(X1, X2)) -> __(proper(X1), proper(X2)) , proper(nil()) -> ok(nil()) , proper(and(X1, X2)) -> and(proper(X1), proper(X2)) , proper(tt()) -> ok(tt()) , proper(isNePal(X)) -> isNePal(proper(X)) , __(mark(X1), X2) -> mark(__(X1, X2)) , __(X1, mark(X2)) -> mark(__(X1, X2)) , __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(mark(X1), X2) -> mark(and(X1, X2)) , isNePal(mark(X)) -> mark(isNePal(X)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2)) , isNePal(ok(X)) -> ok(isNePal(X))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { proper(__(X1, X2)) -> __(proper(X1), proper(X2)) , proper(nil()) -> ok(nil()) , proper(and(X1, X2)) -> and(proper(X1), proper(X2)) , proper(tt()) -> ok(tt()) , proper(isNePal(X)) -> isNePal(proper(X)) , __(mark(X1), X2) -> mark(__(X1, X2)) , __(X1, mark(X2)) -> mark(__(X1, X2)) , __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(mark(X1), X2) -> mark(and(X1, X2)) , isNePal(mark(X)) -> mark(isNePal(X)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2)) , isNePal(ok(X)) -> ok(isNePal(X)) , proper^#(and(X1, X2)) -> c_15(and^#(proper(X1), proper(X2))) , and^#(ok(X1), ok(X2)) -> c_19(and^#(X1, X2)) , and^#(mark(X1), X2) -> c_11(and^#(X1, X2))} Details: We apply the weight gap principle, strictly orienting the rules { __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2)) , and^#(ok(X1), ok(X2)) -> c_19(and^#(X1, X2))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2)) , and^#(ok(X1), ok(X2)) -> c_19(and^#(X1, X2))} Details: Interpretation Functions: active(x1) = [0] x1 + [0] __(x1, x2) = [1] x1 + [1] x2 + [0] mark(x1) = [1] x1 + [0] nil() = [0] and(x1, x2) = [1] x1 + [1] x2 + [0] tt() = [0] isNePal(x1) = [1] x1 + [0] proper(x1) = [1] x1 + [1] ok(x1) = [1] x1 + [1] top(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] __^#(x1, x2) = [0] x1 + [0] x2 + [0] c_1() = [0] c_2() = [0] c_3() = [0] c_4() = [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] and^#(x1, x2) = [1] x1 + [1] x2 + [0] c_8(x1) = [0] x1 + [0] isNePal^#(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [1] x1 + [1] c_12(x1) = [0] x1 + [0] proper^#(x1) = [1] x1 + [1] c_13(x1) = [0] x1 + [0] c_14() = [0] c_15(x1) = [1] x1 + [1] c_16() = [0] c_17(x1) = [0] x1 + [0] c_18(x1) = [0] x1 + [0] c_19(x1) = [1] x1 + [1] c_20(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_21(x1) = [0] x1 + [0] c_22(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {proper^#(and(X1, X2)) -> c_15(and^#(proper(X1), proper(X2)))} and weakly orienting the rules { __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2)) , and^#(ok(X1), ok(X2)) -> c_19(and^#(X1, X2))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {proper^#(and(X1, X2)) -> c_15(and^#(proper(X1), proper(X2)))} Details: Interpretation Functions: active(x1) = [0] x1 + [0] __(x1, x2) = [1] x1 + [1] x2 + [0] mark(x1) = [1] x1 + [0] nil() = [0] and(x1, x2) = [1] x1 + [1] x2 + [0] tt() = [0] isNePal(x1) = [1] x1 + [0] proper(x1) = [1] x1 + [1] ok(x1) = [1] x1 + [1] top(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] __^#(x1, x2) = [0] x1 + [0] x2 + [0] c_1() = [0] c_2() = [0] c_3() = [0] c_4() = [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] and^#(x1, x2) = [1] x1 + [1] x2 + [0] c_8(x1) = [0] x1 + [0] isNePal^#(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [1] x1 + [12] c_12(x1) = [0] x1 + [0] proper^#(x1) = [1] x1 + [3] c_13(x1) = [0] x1 + [0] c_14() = [0] c_15(x1) = [1] x1 + [0] c_16() = [0] c_17(x1) = [0] x1 + [0] c_18(x1) = [0] x1 + [0] c_19(x1) = [1] x1 + [1] c_20(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_21(x1) = [0] x1 + [0] c_22(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {and^#(mark(X1), X2) -> c_11(and^#(X1, X2))} and weakly orienting the rules { proper^#(and(X1, X2)) -> c_15(and^#(proper(X1), proper(X2))) , __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2)) , and^#(ok(X1), ok(X2)) -> c_19(and^#(X1, X2))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {and^#(mark(X1), X2) -> c_11(and^#(X1, X2))} Details: Interpretation Functions: active(x1) = [0] x1 + [0] __(x1, x2) = [1] x1 + [1] x2 + [0] mark(x1) = [1] x1 + [8] nil() = [0] and(x1, x2) = [1] x1 + [1] x2 + [0] tt() = [0] isNePal(x1) = [1] x1 + [0] proper(x1) = [1] x1 + [1] ok(x1) = [1] x1 + [1] top(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] __^#(x1, x2) = [0] x1 + [0] x2 + [0] c_1() = [0] c_2() = [0] c_3() = [0] c_4() = [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] and^#(x1, x2) = [1] x1 + [1] x2 + [1] c_8(x1) = [0] x1 + [0] isNePal^#(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [1] x1 + [0] c_12(x1) = [0] x1 + [0] proper^#(x1) = [1] x1 + [9] c_13(x1) = [0] x1 + [0] c_14() = [0] c_15(x1) = [1] x1 + [0] c_16() = [0] c_17(x1) = [0] x1 + [0] c_18(x1) = [0] x1 + [0] c_19(x1) = [1] x1 + [0] c_20(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_21(x1) = [0] x1 + [0] c_22(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { proper(nil()) -> ok(nil()) , proper(tt()) -> ok(tt())} and weakly orienting the rules { and^#(mark(X1), X2) -> c_11(and^#(X1, X2)) , proper^#(and(X1, X2)) -> c_15(and^#(proper(X1), proper(X2))) , __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2)) , and^#(ok(X1), ok(X2)) -> c_19(and^#(X1, X2))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { proper(nil()) -> ok(nil()) , proper(tt()) -> ok(tt())} Details: Interpretation Functions: active(x1) = [0] x1 + [0] __(x1, x2) = [1] x1 + [1] x2 + [0] mark(x1) = [1] x1 + [8] nil() = [0] and(x1, x2) = [1] x1 + [1] x2 + [0] tt() = [0] isNePal(x1) = [1] x1 + [8] proper(x1) = [1] x1 + [2] ok(x1) = [1] x1 + [1] top(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] __^#(x1, x2) = [0] x1 + [0] x2 + [0] c_1() = [0] c_2() = [0] c_3() = [0] c_4() = [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] and^#(x1, x2) = [1] x1 + [1] x2 + [2] c_8(x1) = [0] x1 + [0] isNePal^#(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [1] x1 + [3] c_12(x1) = [0] x1 + [0] proper^#(x1) = [1] x1 + [9] c_13(x1) = [0] x1 + [0] c_14() = [0] c_15(x1) = [1] x1 + [1] c_16() = [0] c_17(x1) = [0] x1 + [0] c_18(x1) = [0] x1 + [0] c_19(x1) = [1] x1 + [1] c_20(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_21(x1) = [0] x1 + [0] c_22(x1) = [0] x1 + [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { proper(__(X1, X2)) -> __(proper(X1), proper(X2)) , proper(and(X1, X2)) -> and(proper(X1), proper(X2)) , proper(isNePal(X)) -> isNePal(proper(X)) , __(mark(X1), X2) -> mark(__(X1, X2)) , __(X1, mark(X2)) -> mark(__(X1, X2)) , and(mark(X1), X2) -> mark(and(X1, X2)) , isNePal(mark(X)) -> mark(isNePal(X)) , isNePal(ok(X)) -> ok(isNePal(X))} Weak Rules: { proper(nil()) -> ok(nil()) , proper(tt()) -> ok(tt()) , and^#(mark(X1), X2) -> c_11(and^#(X1, X2)) , proper^#(and(X1, X2)) -> c_15(and^#(proper(X1), proper(X2))) , __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2)) , and^#(ok(X1), ok(X2)) -> c_19(and^#(X1, X2))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { proper(__(X1, X2)) -> __(proper(X1), proper(X2)) , proper(and(X1, X2)) -> and(proper(X1), proper(X2)) , proper(isNePal(X)) -> isNePal(proper(X)) , __(mark(X1), X2) -> mark(__(X1, X2)) , __(X1, mark(X2)) -> mark(__(X1, X2)) , and(mark(X1), X2) -> mark(and(X1, X2)) , isNePal(mark(X)) -> mark(isNePal(X)) , isNePal(ok(X)) -> ok(isNePal(X))} Weak Rules: { proper(nil()) -> ok(nil()) , proper(tt()) -> ok(tt()) , and^#(mark(X1), X2) -> c_11(and^#(X1, X2)) , proper^#(and(X1, X2)) -> c_15(and^#(proper(X1), proper(X2))) , __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2)) , and^#(ok(X1), ok(X2)) -> c_19(and^#(X1, X2))} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { mark_0(3) -> 3 , mark_0(4) -> 3 , mark_0(6) -> 3 , mark_0(9) -> 3 , nil_0() -> 4 , tt_0() -> 6 , ok_0(3) -> 9 , ok_0(4) -> 9 , ok_0(6) -> 9 , ok_0(9) -> 9 , and^#_0(3, 3) -> 21 , and^#_0(3, 4) -> 21 , and^#_0(3, 6) -> 21 , and^#_0(3, 9) -> 21 , and^#_0(4, 3) -> 21 , and^#_0(4, 4) -> 21 , and^#_0(4, 6) -> 21 , and^#_0(4, 9) -> 21 , and^#_0(6, 3) -> 21 , and^#_0(6, 4) -> 21 , and^#_0(6, 6) -> 21 , and^#_0(6, 9) -> 21 , and^#_0(9, 3) -> 21 , and^#_0(9, 4) -> 21 , and^#_0(9, 6) -> 21 , and^#_0(9, 9) -> 21 , c_11_0(21) -> 21 , proper^#_0(3) -> 28 , proper^#_0(4) -> 28 , proper^#_0(6) -> 28 , proper^#_0(9) -> 28 , c_19_0(21) -> 21} 13) {proper^#(__(X1, X2)) -> c_13(__^#(proper(X1), proper(X2)))} The usable rules for this path are the following: { proper(__(X1, X2)) -> __(proper(X1), proper(X2)) , proper(nil()) -> ok(nil()) , proper(and(X1, X2)) -> and(proper(X1), proper(X2)) , proper(tt()) -> ok(tt()) , proper(isNePal(X)) -> isNePal(proper(X)) , __(mark(X1), X2) -> mark(__(X1, X2)) , __(X1, mark(X2)) -> mark(__(X1, X2)) , __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(mark(X1), X2) -> mark(and(X1, X2)) , isNePal(mark(X)) -> mark(isNePal(X)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2)) , isNePal(ok(X)) -> ok(isNePal(X))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { proper(__(X1, X2)) -> __(proper(X1), proper(X2)) , proper(nil()) -> ok(nil()) , proper(and(X1, X2)) -> and(proper(X1), proper(X2)) , proper(tt()) -> ok(tt()) , proper(isNePal(X)) -> isNePal(proper(X)) , __(mark(X1), X2) -> mark(__(X1, X2)) , __(X1, mark(X2)) -> mark(__(X1, X2)) , __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(mark(X1), X2) -> mark(and(X1, X2)) , isNePal(mark(X)) -> mark(isNePal(X)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2)) , isNePal(ok(X)) -> ok(isNePal(X)) , proper^#(__(X1, X2)) -> c_13(__^#(proper(X1), proper(X2)))} Details: We apply the weight gap principle, strictly orienting the rules { __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2))} Details: Interpretation Functions: active(x1) = [0] x1 + [0] __(x1, x2) = [1] x1 + [1] x2 + [0] mark(x1) = [1] x1 + [1] nil() = [0] and(x1, x2) = [1] x1 + [1] x2 + [0] tt() = [0] isNePal(x1) = [1] x1 + [0] proper(x1) = [1] x1 + [1] ok(x1) = [1] x1 + [1] top(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] __^#(x1, x2) = [1] x1 + [1] x2 + [0] c_1() = [0] c_2() = [0] c_3() = [0] c_4() = [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] and^#(x1, x2) = [0] x1 + [0] x2 + [0] c_8(x1) = [0] x1 + [0] isNePal^#(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] proper^#(x1) = [1] x1 + [1] c_13(x1) = [1] x1 + [1] c_14() = [0] c_15(x1) = [0] x1 + [0] c_16() = [0] c_17(x1) = [0] x1 + [0] c_18(x1) = [0] x1 + [0] c_19(x1) = [0] x1 + [0] c_20(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_21(x1) = [0] x1 + [0] c_22(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {proper^#(__(X1, X2)) -> c_13(__^#(proper(X1), proper(X2)))} and weakly orienting the rules { __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {proper^#(__(X1, X2)) -> c_13(__^#(proper(X1), proper(X2)))} Details: Interpretation Functions: active(x1) = [0] x1 + [0] __(x1, x2) = [1] x1 + [1] x2 + [0] mark(x1) = [1] x1 + [1] nil() = [0] and(x1, x2) = [1] x1 + [1] x2 + [0] tt() = [0] isNePal(x1) = [1] x1 + [2] proper(x1) = [1] x1 + [1] ok(x1) = [1] x1 + [1] top(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] __^#(x1, x2) = [1] x1 + [1] x2 + [0] c_1() = [0] c_2() = [0] c_3() = [0] c_4() = [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] and^#(x1, x2) = [0] x1 + [0] x2 + [0] c_8(x1) = [0] x1 + [0] isNePal^#(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] proper^#(x1) = [1] x1 + [9] c_13(x1) = [1] x1 + [1] c_14() = [0] c_15(x1) = [0] x1 + [0] c_16() = [0] c_17(x1) = [0] x1 + [0] c_18(x1) = [0] x1 + [0] c_19(x1) = [0] x1 + [0] c_20(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_21(x1) = [0] x1 + [0] c_22(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { proper(nil()) -> ok(nil()) , proper(tt()) -> ok(tt())} and weakly orienting the rules { proper^#(__(X1, X2)) -> c_13(__^#(proper(X1), proper(X2))) , __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { proper(nil()) -> ok(nil()) , proper(tt()) -> ok(tt())} Details: Interpretation Functions: active(x1) = [0] x1 + [0] __(x1, x2) = [1] x1 + [1] x2 + [2] mark(x1) = [1] x1 + [0] nil() = [8] and(x1, x2) = [1] x1 + [1] x2 + [0] tt() = [0] isNePal(x1) = [1] x1 + [1] proper(x1) = [1] x1 + [8] ok(x1) = [1] x1 + [7] top(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] __^#(x1, x2) = [1] x1 + [1] x2 + [1] c_1() = [0] c_2() = [0] c_3() = [0] c_4() = [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] and^#(x1, x2) = [0] x1 + [0] x2 + [0] c_8(x1) = [0] x1 + [0] isNePal^#(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] proper^#(x1) = [1] x1 + [15] c_13(x1) = [1] x1 + [0] c_14() = [0] c_15(x1) = [0] x1 + [0] c_16() = [0] c_17(x1) = [0] x1 + [0] c_18(x1) = [0] x1 + [0] c_19(x1) = [0] x1 + [0] c_20(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_21(x1) = [0] x1 + [0] c_22(x1) = [0] x1 + [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { proper(__(X1, X2)) -> __(proper(X1), proper(X2)) , proper(and(X1, X2)) -> and(proper(X1), proper(X2)) , proper(isNePal(X)) -> isNePal(proper(X)) , __(mark(X1), X2) -> mark(__(X1, X2)) , __(X1, mark(X2)) -> mark(__(X1, X2)) , and(mark(X1), X2) -> mark(and(X1, X2)) , isNePal(mark(X)) -> mark(isNePal(X)) , isNePal(ok(X)) -> ok(isNePal(X))} Weak Rules: { proper(nil()) -> ok(nil()) , proper(tt()) -> ok(tt()) , proper^#(__(X1, X2)) -> c_13(__^#(proper(X1), proper(X2))) , __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { proper(__(X1, X2)) -> __(proper(X1), proper(X2)) , proper(and(X1, X2)) -> and(proper(X1), proper(X2)) , proper(isNePal(X)) -> isNePal(proper(X)) , __(mark(X1), X2) -> mark(__(X1, X2)) , __(X1, mark(X2)) -> mark(__(X1, X2)) , and(mark(X1), X2) -> mark(and(X1, X2)) , isNePal(mark(X)) -> mark(isNePal(X)) , isNePal(ok(X)) -> ok(isNePal(X))} Weak Rules: { proper(nil()) -> ok(nil()) , proper(tt()) -> ok(tt()) , proper^#(__(X1, X2)) -> c_13(__^#(proper(X1), proper(X2))) , __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2))} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { mark_0(3) -> 3 , mark_0(4) -> 3 , mark_0(6) -> 3 , mark_0(9) -> 3 , nil_0() -> 4 , tt_0() -> 6 , ok_0(3) -> 9 , ok_0(4) -> 9 , ok_0(6) -> 9 , ok_0(9) -> 9 , __^#_0(3, 3) -> 13 , __^#_0(3, 4) -> 13 , __^#_0(3, 6) -> 13 , __^#_0(3, 9) -> 13 , __^#_0(4, 3) -> 13 , __^#_0(4, 4) -> 13 , __^#_0(4, 6) -> 13 , __^#_0(4, 9) -> 13 , __^#_0(6, 3) -> 13 , __^#_0(6, 4) -> 13 , __^#_0(6, 6) -> 13 , __^#_0(6, 9) -> 13 , __^#_0(9, 3) -> 13 , __^#_0(9, 4) -> 13 , __^#_0(9, 6) -> 13 , __^#_0(9, 9) -> 13 , proper^#_0(3) -> 28 , proper^#_0(4) -> 28 , proper^#_0(6) -> 28 , proper^#_0(9) -> 28} 14) {proper^#(and(X1, X2)) -> c_15(and^#(proper(X1), proper(X2)))} The usable rules for this path are the following: { proper(__(X1, X2)) -> __(proper(X1), proper(X2)) , proper(nil()) -> ok(nil()) , proper(and(X1, X2)) -> and(proper(X1), proper(X2)) , proper(tt()) -> ok(tt()) , proper(isNePal(X)) -> isNePal(proper(X)) , __(mark(X1), X2) -> mark(__(X1, X2)) , __(X1, mark(X2)) -> mark(__(X1, X2)) , __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(mark(X1), X2) -> mark(and(X1, X2)) , isNePal(mark(X)) -> mark(isNePal(X)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2)) , isNePal(ok(X)) -> ok(isNePal(X))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { proper(__(X1, X2)) -> __(proper(X1), proper(X2)) , proper(nil()) -> ok(nil()) , proper(and(X1, X2)) -> and(proper(X1), proper(X2)) , proper(tt()) -> ok(tt()) , proper(isNePal(X)) -> isNePal(proper(X)) , __(mark(X1), X2) -> mark(__(X1, X2)) , __(X1, mark(X2)) -> mark(__(X1, X2)) , __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(mark(X1), X2) -> mark(and(X1, X2)) , isNePal(mark(X)) -> mark(isNePal(X)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2)) , isNePal(ok(X)) -> ok(isNePal(X)) , proper^#(and(X1, X2)) -> c_15(and^#(proper(X1), proper(X2)))} Details: We apply the weight gap principle, strictly orienting the rules { __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2))} Details: Interpretation Functions: active(x1) = [0] x1 + [0] __(x1, x2) = [1] x1 + [1] x2 + [0] mark(x1) = [1] x1 + [1] nil() = [0] and(x1, x2) = [1] x1 + [1] x2 + [0] tt() = [0] isNePal(x1) = [1] x1 + [0] proper(x1) = [1] x1 + [1] ok(x1) = [1] x1 + [1] top(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] __^#(x1, x2) = [0] x1 + [0] x2 + [0] c_1() = [0] c_2() = [0] c_3() = [0] c_4() = [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] and^#(x1, x2) = [1] x1 + [1] x2 + [0] c_8(x1) = [0] x1 + [0] isNePal^#(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] proper^#(x1) = [1] x1 + [1] c_13(x1) = [0] x1 + [0] c_14() = [0] c_15(x1) = [1] x1 + [1] c_16() = [0] c_17(x1) = [0] x1 + [0] c_18(x1) = [0] x1 + [0] c_19(x1) = [0] x1 + [0] c_20(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_21(x1) = [0] x1 + [0] c_22(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {proper^#(and(X1, X2)) -> c_15(and^#(proper(X1), proper(X2)))} and weakly orienting the rules { __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {proper^#(and(X1, X2)) -> c_15(and^#(proper(X1), proper(X2)))} Details: Interpretation Functions: active(x1) = [0] x1 + [0] __(x1, x2) = [1] x1 + [1] x2 + [0] mark(x1) = [1] x1 + [1] nil() = [0] and(x1, x2) = [1] x1 + [1] x2 + [0] tt() = [0] isNePal(x1) = [1] x1 + [2] proper(x1) = [1] x1 + [1] ok(x1) = [1] x1 + [1] top(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] __^#(x1, x2) = [0] x1 + [0] x2 + [0] c_1() = [0] c_2() = [0] c_3() = [0] c_4() = [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] and^#(x1, x2) = [1] x1 + [1] x2 + [0] c_8(x1) = [0] x1 + [0] isNePal^#(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] proper^#(x1) = [1] x1 + [9] c_13(x1) = [0] x1 + [0] c_14() = [0] c_15(x1) = [1] x1 + [1] c_16() = [0] c_17(x1) = [0] x1 + [0] c_18(x1) = [0] x1 + [0] c_19(x1) = [0] x1 + [0] c_20(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_21(x1) = [0] x1 + [0] c_22(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { proper(nil()) -> ok(nil()) , proper(tt()) -> ok(tt())} and weakly orienting the rules { proper^#(and(X1, X2)) -> c_15(and^#(proper(X1), proper(X2))) , __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { proper(nil()) -> ok(nil()) , proper(tt()) -> ok(tt())} Details: Interpretation Functions: active(x1) = [0] x1 + [0] __(x1, x2) = [1] x1 + [1] x2 + [0] mark(x1) = [1] x1 + [0] nil() = [8] and(x1, x2) = [1] x1 + [1] x2 + [2] tt() = [0] isNePal(x1) = [1] x1 + [1] proper(x1) = [1] x1 + [8] ok(x1) = [1] x1 + [7] top(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] __^#(x1, x2) = [0] x1 + [0] x2 + [0] c_1() = [0] c_2() = [0] c_3() = [0] c_4() = [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] and^#(x1, x2) = [1] x1 + [1] x2 + [1] c_8(x1) = [0] x1 + [0] isNePal^#(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] proper^#(x1) = [1] x1 + [15] c_13(x1) = [0] x1 + [0] c_14() = [0] c_15(x1) = [1] x1 + [0] c_16() = [0] c_17(x1) = [0] x1 + [0] c_18(x1) = [0] x1 + [0] c_19(x1) = [0] x1 + [0] c_20(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_21(x1) = [0] x1 + [0] c_22(x1) = [0] x1 + [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { proper(__(X1, X2)) -> __(proper(X1), proper(X2)) , proper(and(X1, X2)) -> and(proper(X1), proper(X2)) , proper(isNePal(X)) -> isNePal(proper(X)) , __(mark(X1), X2) -> mark(__(X1, X2)) , __(X1, mark(X2)) -> mark(__(X1, X2)) , and(mark(X1), X2) -> mark(and(X1, X2)) , isNePal(mark(X)) -> mark(isNePal(X)) , isNePal(ok(X)) -> ok(isNePal(X))} Weak Rules: { proper(nil()) -> ok(nil()) , proper(tt()) -> ok(tt()) , proper^#(and(X1, X2)) -> c_15(and^#(proper(X1), proper(X2))) , __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { proper(__(X1, X2)) -> __(proper(X1), proper(X2)) , proper(and(X1, X2)) -> and(proper(X1), proper(X2)) , proper(isNePal(X)) -> isNePal(proper(X)) , __(mark(X1), X2) -> mark(__(X1, X2)) , __(X1, mark(X2)) -> mark(__(X1, X2)) , and(mark(X1), X2) -> mark(and(X1, X2)) , isNePal(mark(X)) -> mark(isNePal(X)) , isNePal(ok(X)) -> ok(isNePal(X))} Weak Rules: { proper(nil()) -> ok(nil()) , proper(tt()) -> ok(tt()) , proper^#(and(X1, X2)) -> c_15(and^#(proper(X1), proper(X2))) , __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2))} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { mark_0(3) -> 3 , mark_0(4) -> 3 , mark_0(6) -> 3 , mark_0(9) -> 3 , nil_0() -> 4 , tt_0() -> 6 , ok_0(3) -> 9 , ok_0(4) -> 9 , ok_0(6) -> 9 , ok_0(9) -> 9 , and^#_0(3, 3) -> 21 , and^#_0(3, 4) -> 21 , and^#_0(3, 6) -> 21 , and^#_0(3, 9) -> 21 , and^#_0(4, 3) -> 21 , and^#_0(4, 4) -> 21 , and^#_0(4, 6) -> 21 , and^#_0(4, 9) -> 21 , and^#_0(6, 3) -> 21 , and^#_0(6, 4) -> 21 , and^#_0(6, 6) -> 21 , and^#_0(6, 9) -> 21 , and^#_0(9, 3) -> 21 , and^#_0(9, 4) -> 21 , and^#_0(9, 6) -> 21 , and^#_0(9, 9) -> 21 , proper^#_0(3) -> 28 , proper^#_0(4) -> 28 , proper^#_0(6) -> 28 , proper^#_0(9) -> 28} 15) {proper^#(isNePal(X)) -> c_17(isNePal^#(proper(X)))} The usable rules for this path are the following: { proper(__(X1, X2)) -> __(proper(X1), proper(X2)) , proper(nil()) -> ok(nil()) , proper(and(X1, X2)) -> and(proper(X1), proper(X2)) , proper(tt()) -> ok(tt()) , proper(isNePal(X)) -> isNePal(proper(X)) , __(mark(X1), X2) -> mark(__(X1, X2)) , __(X1, mark(X2)) -> mark(__(X1, X2)) , __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(mark(X1), X2) -> mark(and(X1, X2)) , isNePal(mark(X)) -> mark(isNePal(X)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2)) , isNePal(ok(X)) -> ok(isNePal(X))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { proper(__(X1, X2)) -> __(proper(X1), proper(X2)) , proper(nil()) -> ok(nil()) , proper(and(X1, X2)) -> and(proper(X1), proper(X2)) , proper(tt()) -> ok(tt()) , proper(isNePal(X)) -> isNePal(proper(X)) , __(mark(X1), X2) -> mark(__(X1, X2)) , __(X1, mark(X2)) -> mark(__(X1, X2)) , __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(mark(X1), X2) -> mark(and(X1, X2)) , isNePal(mark(X)) -> mark(isNePal(X)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2)) , isNePal(ok(X)) -> ok(isNePal(X)) , proper^#(isNePal(X)) -> c_17(isNePal^#(proper(X)))} Details: We apply the weight gap principle, strictly orienting the rules { __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2))} Details: Interpretation Functions: active(x1) = [0] x1 + [0] __(x1, x2) = [1] x1 + [1] x2 + [0] mark(x1) = [1] x1 + [0] nil() = [0] and(x1, x2) = [1] x1 + [1] x2 + [0] tt() = [0] isNePal(x1) = [1] x1 + [0] proper(x1) = [1] x1 + [1] ok(x1) = [1] x1 + [1] top(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] __^#(x1, x2) = [0] x1 + [0] x2 + [0] c_1() = [0] c_2() = [0] c_3() = [0] c_4() = [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] and^#(x1, x2) = [0] x1 + [0] x2 + [0] c_8(x1) = [0] x1 + [0] isNePal^#(x1) = [1] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] proper^#(x1) = [1] x1 + [1] c_13(x1) = [0] x1 + [0] c_14() = [0] c_15(x1) = [0] x1 + [0] c_16() = [0] c_17(x1) = [1] x1 + [0] c_18(x1) = [0] x1 + [0] c_19(x1) = [0] x1 + [0] c_20(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_21(x1) = [0] x1 + [0] c_22(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {proper^#(isNePal(X)) -> c_17(isNePal^#(proper(X)))} and weakly orienting the rules { __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {proper^#(isNePal(X)) -> c_17(isNePal^#(proper(X)))} Details: Interpretation Functions: active(x1) = [0] x1 + [0] __(x1, x2) = [1] x1 + [1] x2 + [0] mark(x1) = [1] x1 + [0] nil() = [0] and(x1, x2) = [1] x1 + [1] x2 + [0] tt() = [0] isNePal(x1) = [1] x1 + [0] proper(x1) = [1] x1 + [1] ok(x1) = [1] x1 + [1] top(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] __^#(x1, x2) = [0] x1 + [0] x2 + [0] c_1() = [0] c_2() = [0] c_3() = [0] c_4() = [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] and^#(x1, x2) = [0] x1 + [0] x2 + [0] c_8(x1) = [0] x1 + [0] isNePal^#(x1) = [1] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] proper^#(x1) = [1] x1 + [9] c_13(x1) = [0] x1 + [0] c_14() = [0] c_15(x1) = [0] x1 + [0] c_16() = [0] c_17(x1) = [1] x1 + [0] c_18(x1) = [0] x1 + [0] c_19(x1) = [0] x1 + [0] c_20(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_21(x1) = [0] x1 + [0] c_22(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { proper(nil()) -> ok(nil()) , proper(tt()) -> ok(tt())} and weakly orienting the rules { proper^#(isNePal(X)) -> c_17(isNePal^#(proper(X))) , __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { proper(nil()) -> ok(nil()) , proper(tt()) -> ok(tt())} Details: Interpretation Functions: active(x1) = [0] x1 + [0] __(x1, x2) = [1] x1 + [1] x2 + [0] mark(x1) = [1] x1 + [0] nil() = [15] and(x1, x2) = [1] x1 + [1] x2 + [0] tt() = [0] isNePal(x1) = [1] x1 + [0] proper(x1) = [1] x1 + [1] ok(x1) = [1] x1 + [0] top(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] __^#(x1, x2) = [0] x1 + [0] x2 + [0] c_1() = [0] c_2() = [0] c_3() = [0] c_4() = [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] and^#(x1, x2) = [0] x1 + [0] x2 + [0] c_8(x1) = [0] x1 + [0] isNePal^#(x1) = [1] x1 + [2] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] proper^#(x1) = [1] x1 + [9] c_13(x1) = [0] x1 + [0] c_14() = [0] c_15(x1) = [0] x1 + [0] c_16() = [0] c_17(x1) = [1] x1 + [0] c_18(x1) = [0] x1 + [0] c_19(x1) = [0] x1 + [0] c_20(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_21(x1) = [0] x1 + [0] c_22(x1) = [0] x1 + [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { proper(__(X1, X2)) -> __(proper(X1), proper(X2)) , proper(and(X1, X2)) -> and(proper(X1), proper(X2)) , proper(isNePal(X)) -> isNePal(proper(X)) , __(mark(X1), X2) -> mark(__(X1, X2)) , __(X1, mark(X2)) -> mark(__(X1, X2)) , and(mark(X1), X2) -> mark(and(X1, X2)) , isNePal(mark(X)) -> mark(isNePal(X)) , isNePal(ok(X)) -> ok(isNePal(X))} Weak Rules: { proper(nil()) -> ok(nil()) , proper(tt()) -> ok(tt()) , proper^#(isNePal(X)) -> c_17(isNePal^#(proper(X))) , __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { proper(__(X1, X2)) -> __(proper(X1), proper(X2)) , proper(and(X1, X2)) -> and(proper(X1), proper(X2)) , proper(isNePal(X)) -> isNePal(proper(X)) , __(mark(X1), X2) -> mark(__(X1, X2)) , __(X1, mark(X2)) -> mark(__(X1, X2)) , and(mark(X1), X2) -> mark(and(X1, X2)) , isNePal(mark(X)) -> mark(isNePal(X)) , isNePal(ok(X)) -> ok(isNePal(X))} Weak Rules: { proper(nil()) -> ok(nil()) , proper(tt()) -> ok(tt()) , proper^#(isNePal(X)) -> c_17(isNePal^#(proper(X))) , __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , and(ok(X1), ok(X2)) -> ok(and(X1, X2))} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { mark_0(3) -> 3 , mark_0(4) -> 3 , mark_0(6) -> 3 , mark_0(9) -> 3 , nil_0() -> 4 , tt_0() -> 6 , ok_0(3) -> 9 , ok_0(4) -> 9 , ok_0(6) -> 9 , ok_0(9) -> 9 , isNePal^#_0(3) -> 23 , isNePal^#_0(4) -> 23 , isNePal^#_0(6) -> 23 , isNePal^#_0(9) -> 23 , proper^#_0(3) -> 28 , proper^#_0(4) -> 28 , proper^#_0(6) -> 28 , proper^#_0(9) -> 28} 16) { active^#(__(__(X, Y), Z)) -> c_0(__^#(X, __(Y, Z))) , __^#(ok(X1), ok(X2)) -> c_18(__^#(X1, X2)) , __^#(X1, mark(X2)) -> c_10(__^#(X1, X2)) , __^#(mark(X1), X2) -> c_9(__^#(X1, X2))} The usable rules for this path are the following: { __(mark(X1), X2) -> mark(__(X1, X2)) , __(X1, mark(X2)) -> mark(__(X1, X2)) , __(ok(X1), ok(X2)) -> ok(__(X1, X2))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { __(mark(X1), X2) -> mark(__(X1, X2)) , __(X1, mark(X2)) -> mark(__(X1, X2)) , __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , active^#(__(__(X, Y), Z)) -> c_0(__^#(X, __(Y, Z))) , __^#(ok(X1), ok(X2)) -> c_18(__^#(X1, X2)) , __^#(X1, mark(X2)) -> c_10(__^#(X1, X2)) , __^#(mark(X1), X2) -> c_9(__^#(X1, X2))} Details: We apply the weight gap principle, strictly orienting the rules {active^#(__(__(X, Y), Z)) -> c_0(__^#(X, __(Y, Z)))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {active^#(__(__(X, Y), Z)) -> c_0(__^#(X, __(Y, Z)))} Details: Interpretation Functions: active(x1) = [0] x1 + [0] __(x1, x2) = [1] x1 + [1] x2 + [1] mark(x1) = [1] x1 + [0] nil() = [0] and(x1, x2) = [0] x1 + [0] x2 + [0] tt() = [0] isNePal(x1) = [0] x1 + [0] proper(x1) = [0] x1 + [0] ok(x1) = [1] x1 + [0] top(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [1] c_0(x1) = [1] x1 + [0] __^#(x1, x2) = [1] x1 + [1] x2 + [0] c_1() = [0] c_2() = [0] c_3() = [0] c_4() = [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] and^#(x1, x2) = [0] x1 + [0] x2 + [0] c_8(x1) = [0] x1 + [0] isNePal^#(x1) = [0] x1 + [0] c_9(x1) = [1] x1 + [1] c_10(x1) = [1] x1 + [1] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14() = [0] c_15(x1) = [0] x1 + [0] c_16() = [0] c_17(x1) = [0] x1 + [0] c_18(x1) = [1] x1 + [1] c_19(x1) = [0] x1 + [0] c_20(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_21(x1) = [0] x1 + [0] c_22(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , __^#(ok(X1), ok(X2)) -> c_18(__^#(X1, X2))} and weakly orienting the rules {active^#(__(__(X, Y), Z)) -> c_0(__^#(X, __(Y, Z)))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , __^#(ok(X1), ok(X2)) -> c_18(__^#(X1, X2))} Details: Interpretation Functions: active(x1) = [0] x1 + [0] __(x1, x2) = [1] x1 + [1] x2 + [1] mark(x1) = [1] x1 + [0] nil() = [0] and(x1, x2) = [0] x1 + [0] x2 + [0] tt() = [0] isNePal(x1) = [0] x1 + [0] proper(x1) = [0] x1 + [0] ok(x1) = [1] x1 + [8] top(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [2] c_0(x1) = [1] x1 + [2] __^#(x1, x2) = [1] x1 + [1] x2 + [0] c_1() = [0] c_2() = [0] c_3() = [0] c_4() = [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] and^#(x1, x2) = [0] x1 + [0] x2 + [0] c_8(x1) = [0] x1 + [0] isNePal^#(x1) = [0] x1 + [0] c_9(x1) = [1] x1 + [0] c_10(x1) = [1] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14() = [0] c_15(x1) = [0] x1 + [0] c_16() = [0] c_17(x1) = [0] x1 + [0] c_18(x1) = [1] x1 + [1] c_19(x1) = [0] x1 + [0] c_20(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_21(x1) = [0] x1 + [0] c_22(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { __^#(X1, mark(X2)) -> c_10(__^#(X1, X2)) , __^#(mark(X1), X2) -> c_9(__^#(X1, X2))} and weakly orienting the rules { __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , __^#(ok(X1), ok(X2)) -> c_18(__^#(X1, X2)) , active^#(__(__(X, Y), Z)) -> c_0(__^#(X, __(Y, Z)))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { __^#(X1, mark(X2)) -> c_10(__^#(X1, X2)) , __^#(mark(X1), X2) -> c_9(__^#(X1, X2))} Details: Interpretation Functions: active(x1) = [0] x1 + [0] __(x1, x2) = [1] x1 + [1] x2 + [1] mark(x1) = [1] x1 + [8] nil() = [0] and(x1, x2) = [0] x1 + [0] x2 + [0] tt() = [0] isNePal(x1) = [0] x1 + [0] proper(x1) = [0] x1 + [0] ok(x1) = [1] x1 + [1] top(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [3] c_0(x1) = [1] x1 + [4] __^#(x1, x2) = [1] x1 + [1] x2 + [0] c_1() = [0] c_2() = [0] c_3() = [0] c_4() = [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] and^#(x1, x2) = [0] x1 + [0] x2 + [0] c_8(x1) = [0] x1 + [0] isNePal^#(x1) = [0] x1 + [0] c_9(x1) = [1] x1 + [1] c_10(x1) = [1] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14() = [0] c_15(x1) = [0] x1 + [0] c_16() = [0] c_17(x1) = [0] x1 + [0] c_18(x1) = [1] x1 + [0] c_19(x1) = [0] x1 + [0] c_20(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_21(x1) = [0] x1 + [0] c_22(x1) = [0] x1 + [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { __(mark(X1), X2) -> mark(__(X1, X2)) , __(X1, mark(X2)) -> mark(__(X1, X2))} Weak Rules: { __^#(X1, mark(X2)) -> c_10(__^#(X1, X2)) , __^#(mark(X1), X2) -> c_9(__^#(X1, X2)) , __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , __^#(ok(X1), ok(X2)) -> c_18(__^#(X1, X2)) , active^#(__(__(X, Y), Z)) -> c_0(__^#(X, __(Y, Z)))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { __(mark(X1), X2) -> mark(__(X1, X2)) , __(X1, mark(X2)) -> mark(__(X1, X2))} Weak Rules: { __^#(X1, mark(X2)) -> c_10(__^#(X1, X2)) , __^#(mark(X1), X2) -> c_9(__^#(X1, X2)) , __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , __^#(ok(X1), ok(X2)) -> c_18(__^#(X1, X2)) , active^#(__(__(X, Y), Z)) -> c_0(__^#(X, __(Y, Z)))} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { mark_0(3) -> 3 , mark_0(9) -> 3 , ok_0(3) -> 9 , ok_0(9) -> 9 , active^#_0(3) -> 11 , active^#_0(9) -> 11 , __^#_0(3, 3) -> 13 , __^#_0(3, 9) -> 13 , __^#_0(9, 3) -> 13 , __^#_0(9, 9) -> 13 , c_9_0(13) -> 13 , c_10_0(13) -> 13 , c_18_0(13) -> 13} 17) {active^#(__(__(X, Y), Z)) -> c_0(__^#(X, __(Y, Z)))} The usable rules for this path are the following: { __(mark(X1), X2) -> mark(__(X1, X2)) , __(X1, mark(X2)) -> mark(__(X1, X2)) , __(ok(X1), ok(X2)) -> ok(__(X1, X2))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { __(mark(X1), X2) -> mark(__(X1, X2)) , __(X1, mark(X2)) -> mark(__(X1, X2)) , __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , active^#(__(__(X, Y), Z)) -> c_0(__^#(X, __(Y, Z)))} Details: We apply the weight gap principle, strictly orienting the rules {active^#(__(__(X, Y), Z)) -> c_0(__^#(X, __(Y, Z)))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {active^#(__(__(X, Y), Z)) -> c_0(__^#(X, __(Y, Z)))} Details: Interpretation Functions: active(x1) = [0] x1 + [0] __(x1, x2) = [1] x1 + [1] x2 + [1] mark(x1) = [1] x1 + [0] nil() = [0] and(x1, x2) = [0] x1 + [0] x2 + [0] tt() = [0] isNePal(x1) = [0] x1 + [0] proper(x1) = [0] x1 + [0] ok(x1) = [1] x1 + [0] top(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [1] c_0(x1) = [1] x1 + [0] __^#(x1, x2) = [1] x1 + [1] x2 + [0] c_1() = [0] c_2() = [0] c_3() = [0] c_4() = [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] and^#(x1, x2) = [0] x1 + [0] x2 + [0] c_8(x1) = [0] x1 + [0] isNePal^#(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14() = [0] c_15(x1) = [0] x1 + [0] c_16() = [0] c_17(x1) = [0] x1 + [0] c_18(x1) = [0] x1 + [0] c_19(x1) = [0] x1 + [0] c_20(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_21(x1) = [0] x1 + [0] c_22(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {__(ok(X1), ok(X2)) -> ok(__(X1, X2))} and weakly orienting the rules {active^#(__(__(X, Y), Z)) -> c_0(__^#(X, __(Y, Z)))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {__(ok(X1), ok(X2)) -> ok(__(X1, X2))} Details: Interpretation Functions: active(x1) = [0] x1 + [0] __(x1, x2) = [1] x1 + [1] x2 + [1] mark(x1) = [1] x1 + [0] nil() = [0] and(x1, x2) = [0] x1 + [0] x2 + [0] tt() = [0] isNePal(x1) = [0] x1 + [0] proper(x1) = [0] x1 + [0] ok(x1) = [1] x1 + [8] top(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [9] c_0(x1) = [1] x1 + [0] __^#(x1, x2) = [1] x1 + [1] x2 + [0] c_1() = [0] c_2() = [0] c_3() = [0] c_4() = [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] and^#(x1, x2) = [0] x1 + [0] x2 + [0] c_8(x1) = [0] x1 + [0] isNePal^#(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14() = [0] c_15(x1) = [0] x1 + [0] c_16() = [0] c_17(x1) = [0] x1 + [0] c_18(x1) = [0] x1 + [0] c_19(x1) = [0] x1 + [0] c_20(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_21(x1) = [0] x1 + [0] c_22(x1) = [0] x1 + [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { __(mark(X1), X2) -> mark(__(X1, X2)) , __(X1, mark(X2)) -> mark(__(X1, X2))} Weak Rules: { __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , active^#(__(__(X, Y), Z)) -> c_0(__^#(X, __(Y, Z)))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { __(mark(X1), X2) -> mark(__(X1, X2)) , __(X1, mark(X2)) -> mark(__(X1, X2))} Weak Rules: { __(ok(X1), ok(X2)) -> ok(__(X1, X2)) , active^#(__(__(X, Y), Z)) -> c_0(__^#(X, __(Y, Z)))} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { mark_0(3) -> 3 , mark_0(9) -> 3 , ok_0(3) -> 9 , ok_0(9) -> 9 , active^#_0(3) -> 11 , active^#_0(9) -> 11 , __^#_0(3, 3) -> 13 , __^#_0(3, 9) -> 13 , __^#_0(9, 3) -> 13 , __^#_0(9, 9) -> 13} 18) {active^#(__(nil(), X)) -> c_2()} The usable rules for this path are empty. We have oriented the usable rules with the following strongly linear interpretation: Interpretation Functions: active(x1) = [0] x1 + [0] __(x1, x2) = [0] x1 + [0] x2 + [0] mark(x1) = [0] x1 + [0] nil() = [0] and(x1, x2) = [0] x1 + [0] x2 + [0] tt() = [0] isNePal(x1) = [0] x1 + [0] proper(x1) = [0] x1 + [0] ok(x1) = [0] x1 + [0] top(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] __^#(x1, x2) = [0] x1 + [0] x2 + [0] c_1() = [0] c_2() = [0] c_3() = [0] c_4() = [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] and^#(x1, x2) = [0] x1 + [0] x2 + [0] c_8(x1) = [0] x1 + [0] isNePal^#(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14() = [0] c_15(x1) = [0] x1 + [0] c_16() = [0] c_17(x1) = [0] x1 + [0] c_18(x1) = [0] x1 + [0] c_19(x1) = [0] x1 + [0] c_20(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_21(x1) = [0] x1 + [0] c_22(x1) = [0] x1 + [0] We have applied the subprocessor on the resulting DP-problem: 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {active^#(__(nil(), X)) -> c_2()} Weak Rules: {} Details: We apply the weight gap principle, strictly orienting the rules {active^#(__(nil(), X)) -> c_2()} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {active^#(__(nil(), X)) -> c_2()} Details: Interpretation Functions: active(x1) = [0] x1 + [0] __(x1, x2) = [1] x1 + [1] x2 + [0] mark(x1) = [0] x1 + [0] nil() = [0] and(x1, x2) = [0] x1 + [0] x2 + [0] tt() = [0] isNePal(x1) = [0] x1 + [0] proper(x1) = [0] x1 + [0] ok(x1) = [0] x1 + [0] top(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [1] c_0(x1) = [0] x1 + [0] __^#(x1, x2) = [0] x1 + [0] x2 + [0] c_1() = [0] c_2() = [0] c_3() = [0] c_4() = [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] and^#(x1, x2) = [0] x1 + [0] x2 + [0] c_8(x1) = [0] x1 + [0] isNePal^#(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14() = [0] c_15(x1) = [0] x1 + [0] c_16() = [0] c_17(x1) = [0] x1 + [0] c_18(x1) = [0] x1 + [0] c_19(x1) = [0] x1 + [0] c_20(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_21(x1) = [0] x1 + [0] c_22(x1) = [0] x1 + [0] Finally we apply the subprocessor 'Empty TRS' ----------- Answer: YES(?,O(1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {} Weak Rules: {active^#(__(nil(), X)) -> c_2()} Details: The given problem does not contain any strict rules 19) {active^#(isNePal(__(I, __(P, I)))) -> c_4()} The usable rules for this path are empty. We have oriented the usable rules with the following strongly linear interpretation: Interpretation Functions: active(x1) = [0] x1 + [0] __(x1, x2) = [0] x1 + [0] x2 + [0] mark(x1) = [0] x1 + [0] nil() = [0] and(x1, x2) = [0] x1 + [0] x2 + [0] tt() = [0] isNePal(x1) = [0] x1 + [0] proper(x1) = [0] x1 + [0] ok(x1) = [0] x1 + [0] top(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] __^#(x1, x2) = [0] x1 + [0] x2 + [0] c_1() = [0] c_2() = [0] c_3() = [0] c_4() = [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] and^#(x1, x2) = [0] x1 + [0] x2 + [0] c_8(x1) = [0] x1 + [0] isNePal^#(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14() = [0] c_15(x1) = [0] x1 + [0] c_16() = [0] c_17(x1) = [0] x1 + [0] c_18(x1) = [0] x1 + [0] c_19(x1) = [0] x1 + [0] c_20(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_21(x1) = [0] x1 + [0] c_22(x1) = [0] x1 + [0] We have applied the subprocessor on the resulting DP-problem: 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {active^#(isNePal(__(I, __(P, I)))) -> c_4()} Weak Rules: {} Details: We apply the weight gap principle, strictly orienting the rules {active^#(isNePal(__(I, __(P, I)))) -> c_4()} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {active^#(isNePal(__(I, __(P, I)))) -> c_4()} Details: Interpretation Functions: active(x1) = [0] x1 + [0] __(x1, x2) = [1] x1 + [1] x2 + [0] mark(x1) = [0] x1 + [0] nil() = [0] and(x1, x2) = [0] x1 + [0] x2 + [0] tt() = [0] isNePal(x1) = [1] x1 + [0] proper(x1) = [0] x1 + [0] ok(x1) = [0] x1 + [0] top(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [1] c_0(x1) = [0] x1 + [0] __^#(x1, x2) = [0] x1 + [0] x2 + [0] c_1() = [0] c_2() = [0] c_3() = [0] c_4() = [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] and^#(x1, x2) = [0] x1 + [0] x2 + [0] c_8(x1) = [0] x1 + [0] isNePal^#(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14() = [0] c_15(x1) = [0] x1 + [0] c_16() = [0] c_17(x1) = [0] x1 + [0] c_18(x1) = [0] x1 + [0] c_19(x1) = [0] x1 + [0] c_20(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_21(x1) = [0] x1 + [0] c_22(x1) = [0] x1 + [0] Finally we apply the subprocessor 'Empty TRS' ----------- Answer: YES(?,O(1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {} Weak Rules: {active^#(isNePal(__(I, __(P, I)))) -> c_4()} Details: The given problem does not contain any strict rules 20) {active^#(__(X, nil())) -> c_1()} The usable rules for this path are empty. We have oriented the usable rules with the following strongly linear interpretation: Interpretation Functions: active(x1) = [0] x1 + [0] __(x1, x2) = [0] x1 + [0] x2 + [0] mark(x1) = [0] x1 + [0] nil() = [0] and(x1, x2) = [0] x1 + [0] x2 + [0] tt() = [0] isNePal(x1) = [0] x1 + [0] proper(x1) = [0] x1 + [0] ok(x1) = [0] x1 + [0] top(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] __^#(x1, x2) = [0] x1 + [0] x2 + [0] c_1() = [0] c_2() = [0] c_3() = [0] c_4() = [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] and^#(x1, x2) = [0] x1 + [0] x2 + [0] c_8(x1) = [0] x1 + [0] isNePal^#(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14() = [0] c_15(x1) = [0] x1 + [0] c_16() = [0] c_17(x1) = [0] x1 + [0] c_18(x1) = [0] x1 + [0] c_19(x1) = [0] x1 + [0] c_20(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_21(x1) = [0] x1 + [0] c_22(x1) = [0] x1 + [0] We have applied the subprocessor on the resulting DP-problem: 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {active^#(__(X, nil())) -> c_1()} Weak Rules: {} Details: We apply the weight gap principle, strictly orienting the rules {active^#(__(X, nil())) -> c_1()} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {active^#(__(X, nil())) -> c_1()} Details: Interpretation Functions: active(x1) = [0] x1 + [0] __(x1, x2) = [1] x1 + [1] x2 + [0] mark(x1) = [0] x1 + [0] nil() = [0] and(x1, x2) = [0] x1 + [0] x2 + [0] tt() = [0] isNePal(x1) = [0] x1 + [0] proper(x1) = [0] x1 + [0] ok(x1) = [0] x1 + [0] top(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [1] c_0(x1) = [0] x1 + [0] __^#(x1, x2) = [0] x1 + [0] x2 + [0] c_1() = [0] c_2() = [0] c_3() = [0] c_4() = [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] and^#(x1, x2) = [0] x1 + [0] x2 + [0] c_8(x1) = [0] x1 + [0] isNePal^#(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14() = [0] c_15(x1) = [0] x1 + [0] c_16() = [0] c_17(x1) = [0] x1 + [0] c_18(x1) = [0] x1 + [0] c_19(x1) = [0] x1 + [0] c_20(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_21(x1) = [0] x1 + [0] c_22(x1) = [0] x1 + [0] Finally we apply the subprocessor 'Empty TRS' ----------- Answer: YES(?,O(1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {} Weak Rules: {active^#(__(X, nil())) -> c_1()} Details: The given problem does not contain any strict rules 21) {active^#(and(tt(), X)) -> c_3()} The usable rules for this path are empty. We have oriented the usable rules with the following strongly linear interpretation: Interpretation Functions: active(x1) = [0] x1 + [0] __(x1, x2) = [0] x1 + [0] x2 + [0] mark(x1) = [0] x1 + [0] nil() = [0] and(x1, x2) = [0] x1 + [0] x2 + [0] tt() = [0] isNePal(x1) = [0] x1 + [0] proper(x1) = [0] x1 + [0] ok(x1) = [0] x1 + [0] top(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] __^#(x1, x2) = [0] x1 + [0] x2 + [0] c_1() = [0] c_2() = [0] c_3() = [0] c_4() = [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] and^#(x1, x2) = [0] x1 + [0] x2 + [0] c_8(x1) = [0] x1 + [0] isNePal^#(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14() = [0] c_15(x1) = [0] x1 + [0] c_16() = [0] c_17(x1) = [0] x1 + [0] c_18(x1) = [0] x1 + [0] c_19(x1) = [0] x1 + [0] c_20(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_21(x1) = [0] x1 + [0] c_22(x1) = [0] x1 + [0] We have applied the subprocessor on the resulting DP-problem: 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {active^#(and(tt(), X)) -> c_3()} Weak Rules: {} Details: We apply the weight gap principle, strictly orienting the rules {active^#(and(tt(), X)) -> c_3()} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {active^#(and(tt(), X)) -> c_3()} Details: Interpretation Functions: active(x1) = [0] x1 + [0] __(x1, x2) = [0] x1 + [0] x2 + [0] mark(x1) = [0] x1 + [0] nil() = [0] and(x1, x2) = [1] x1 + [1] x2 + [0] tt() = [0] isNePal(x1) = [0] x1 + [0] proper(x1) = [0] x1 + [0] ok(x1) = [0] x1 + [0] top(x1) = [0] x1 + [0] active^#(x1) = [1] x1 + [1] c_0(x1) = [0] x1 + [0] __^#(x1, x2) = [0] x1 + [0] x2 + [0] c_1() = [0] c_2() = [0] c_3() = [0] c_4() = [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] and^#(x1, x2) = [0] x1 + [0] x2 + [0] c_8(x1) = [0] x1 + [0] isNePal^#(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14() = [0] c_15(x1) = [0] x1 + [0] c_16() = [0] c_17(x1) = [0] x1 + [0] c_18(x1) = [0] x1 + [0] c_19(x1) = [0] x1 + [0] c_20(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_21(x1) = [0] x1 + [0] c_22(x1) = [0] x1 + [0] Finally we apply the subprocessor 'Empty TRS' ----------- Answer: YES(?,O(1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {} Weak Rules: {active^#(and(tt(), X)) -> c_3()} Details: The given problem does not contain any strict rules 22) {proper^#(tt()) -> c_16()} The usable rules for this path are empty. We have oriented the usable rules with the following strongly linear interpretation: Interpretation Functions: active(x1) = [0] x1 + [0] __(x1, x2) = [0] x1 + [0] x2 + [0] mark(x1) = [0] x1 + [0] nil() = [0] and(x1, x2) = [0] x1 + [0] x2 + [0] tt() = [0] isNePal(x1) = [0] x1 + [0] proper(x1) = [0] x1 + [0] ok(x1) = [0] x1 + [0] top(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] __^#(x1, x2) = [0] x1 + [0] x2 + [0] c_1() = [0] c_2() = [0] c_3() = [0] c_4() = [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] and^#(x1, x2) = [0] x1 + [0] x2 + [0] c_8(x1) = [0] x1 + [0] isNePal^#(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14() = [0] c_15(x1) = [0] x1 + [0] c_16() = [0] c_17(x1) = [0] x1 + [0] c_18(x1) = [0] x1 + [0] c_19(x1) = [0] x1 + [0] c_20(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_21(x1) = [0] x1 + [0] c_22(x1) = [0] x1 + [0] We have applied the subprocessor on the resulting DP-problem: 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {proper^#(tt()) -> c_16()} Weak Rules: {} Details: We apply the weight gap principle, strictly orienting the rules {proper^#(tt()) -> c_16()} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {proper^#(tt()) -> c_16()} Details: Interpretation Functions: active(x1) = [0] x1 + [0] __(x1, x2) = [0] x1 + [0] x2 + [0] mark(x1) = [0] x1 + [0] nil() = [0] and(x1, x2) = [0] x1 + [0] x2 + [0] tt() = [0] isNePal(x1) = [0] x1 + [0] proper(x1) = [0] x1 + [0] ok(x1) = [0] x1 + [0] top(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] __^#(x1, x2) = [0] x1 + [0] x2 + [0] c_1() = [0] c_2() = [0] c_3() = [0] c_4() = [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] and^#(x1, x2) = [0] x1 + [0] x2 + [0] c_8(x1) = [0] x1 + [0] isNePal^#(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] proper^#(x1) = [1] x1 + [1] c_13(x1) = [0] x1 + [0] c_14() = [0] c_15(x1) = [0] x1 + [0] c_16() = [0] c_17(x1) = [0] x1 + [0] c_18(x1) = [0] x1 + [0] c_19(x1) = [0] x1 + [0] c_20(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_21(x1) = [0] x1 + [0] c_22(x1) = [0] x1 + [0] Finally we apply the subprocessor 'Empty TRS' ----------- Answer: YES(?,O(1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {} Weak Rules: {proper^#(tt()) -> c_16()} Details: The given problem does not contain any strict rules 23) {proper^#(nil()) -> c_14()} The usable rules for this path are empty. We have oriented the usable rules with the following strongly linear interpretation: Interpretation Functions: active(x1) = [0] x1 + [0] __(x1, x2) = [0] x1 + [0] x2 + [0] mark(x1) = [0] x1 + [0] nil() = [0] and(x1, x2) = [0] x1 + [0] x2 + [0] tt() = [0] isNePal(x1) = [0] x1 + [0] proper(x1) = [0] x1 + [0] ok(x1) = [0] x1 + [0] top(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] __^#(x1, x2) = [0] x1 + [0] x2 + [0] c_1() = [0] c_2() = [0] c_3() = [0] c_4() = [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] and^#(x1, x2) = [0] x1 + [0] x2 + [0] c_8(x1) = [0] x1 + [0] isNePal^#(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] proper^#(x1) = [0] x1 + [0] c_13(x1) = [0] x1 + [0] c_14() = [0] c_15(x1) = [0] x1 + [0] c_16() = [0] c_17(x1) = [0] x1 + [0] c_18(x1) = [0] x1 + [0] c_19(x1) = [0] x1 + [0] c_20(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_21(x1) = [0] x1 + [0] c_22(x1) = [0] x1 + [0] We have applied the subprocessor on the resulting DP-problem: 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {proper^#(nil()) -> c_14()} Weak Rules: {} Details: We apply the weight gap principle, strictly orienting the rules {proper^#(nil()) -> c_14()} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {proper^#(nil()) -> c_14()} Details: Interpretation Functions: active(x1) = [0] x1 + [0] __(x1, x2) = [0] x1 + [0] x2 + [0] mark(x1) = [0] x1 + [0] nil() = [0] and(x1, x2) = [0] x1 + [0] x2 + [0] tt() = [0] isNePal(x1) = [0] x1 + [0] proper(x1) = [0] x1 + [0] ok(x1) = [0] x1 + [0] top(x1) = [0] x1 + [0] active^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] __^#(x1, x2) = [0] x1 + [0] x2 + [0] c_1() = [0] c_2() = [0] c_3() = [0] c_4() = [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] c_7(x1) = [0] x1 + [0] and^#(x1, x2) = [0] x1 + [0] x2 + [0] c_8(x1) = [0] x1 + [0] isNePal^#(x1) = [0] x1 + [0] c_9(x1) = [0] x1 + [0] c_10(x1) = [0] x1 + [0] c_11(x1) = [0] x1 + [0] c_12(x1) = [0] x1 + [0] proper^#(x1) = [1] x1 + [1] c_13(x1) = [0] x1 + [0] c_14() = [0] c_15(x1) = [0] x1 + [0] c_16() = [0] c_17(x1) = [0] x1 + [0] c_18(x1) = [0] x1 + [0] c_19(x1) = [0] x1 + [0] c_20(x1) = [0] x1 + [0] top^#(x1) = [0] x1 + [0] c_21(x1) = [0] x1 + [0] c_22(x1) = [0] x1 + [0] Finally we apply the subprocessor 'Empty TRS' ----------- Answer: YES(?,O(1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {} Weak Rules: {proper^#(nil()) -> c_14()} Details: The given problem does not contain any strict rules